OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17747–17753

Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer

Nan-Kuang Chen, Cheng-Ling Lee, and Sien Chi  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 17747-17753 (2007)
http://dx.doi.org/10.1364/OE.15.017747


View Full Text Article

Enhanced HTML    Acrobat PDF (5218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate tunable highly wavelength-selective filter based on a 2×2 asymmetric side-polished fiber coupler with dispersive interlayer in one of the coupling arms. The asymmetric fiber coupler is made of two side-polished fibers using identical single-mode fibers and one of the polished fibers is further chemically etched at the central evanescent coupling region to gain closer to the core. An optical liquid with different dispersion characteristics than that of silica fiber is used to fill up the etched hollow and therefore the propagation constant for the polished fiber with dispersive liquid becomes more dispersive and crosses with that of another untreated polished fiber. The location of the cross point and the cross angle between two propagation constant curves determine the coupling wavelength and coupling bandwidth as well as channel wavelength separation, respectively. The coupling wavelength can be tuned at least wider than 84 nm (1.326–1.410 µm) under index variation of 0.004 and with coupling ratios of higher than 30 dB.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(160.6840) Materials : Thermo-optical materials
(260.2030) Physical optics : Dispersion

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 5, 2007
Revised Manuscript: December 7, 2007
Manuscript Accepted: December 10, 2007
Published: December 12, 2007

Citation
Nan-Kuang Chen, Cheng-Ling Lin, and Sien Chi, "Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer," Opt. Express 15, 17747-17753 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Sumetsky, Y. Dulashko, and M. Fishteyn, "Demonstration of a multi-turn microfiber coil resonator," in Proc. of OFC 2007, PDP46 (2007).
  2. C. Vazquez, S. E. Vargas, and J. M. S. Pena, "Sagnac loop in ring resonators for tunable optical filters," J. Lightwave Technol. 23, 2555-2567 (2005). [CrossRef]
  3. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, "Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating," Opt. Lett. 31, 2390-2392 (2006). [CrossRef] [PubMed]
  4. G. P. Agrawal, Fiber-Optic Communication Systems, (Wiley-Interscience, New York, 1997), Chap. 7.
  5. A. K. Das and M. A. Mondal, "Precise control of the center wavelength and bandwidth of wavelength-selective single-mode fiber couplers," Opt. Lett. 19, 795-797 (1994). [CrossRef] [PubMed]
  6. N. K. Chen, S. Chi, and S. M. Tseng, "Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay," Opt. Lett. 29, 2219-2221 (2004). [CrossRef] [PubMed]
  7. N. J. C. Libatique, L. Wang, R. K. Jain, "Single-longitudinal-mode tunable WDM-channel-selectable fiber laser," Opt. Express 10, 1503-1507 (2002). [PubMed]
  8. A. W. Snyder and Y. Chen, "Nonlinear fiber couplers: switches and polarization beam splitters," Opt. Lett. 14, 517-519 (1989). [CrossRef] [PubMed]
  9. C. W. Wu, T. L. Wu, and H. C. Chang, "A novel fabrication method for all-fiber, weakly fused, polarization beamsplitters," IEEE Photon. Technol. Lett. 7, 786-788 (1995). [CrossRef]
  10. K. Morishita, "Wavelength-selective optical-fiber directional couplers using dispersive materials," Opt. Lett. 13, 158-160 (1988). [CrossRef] [PubMed]
  11. R. Zengerle and O. Leminger, "Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibers," J. Lightwave Technol. LT-5, 1196-1198 (1987). [CrossRef]
  12. C. J. Chung and A. Safaai-Jazi, "Narrow-band spectral filter made of W-index and step-index fibers," J. Lightwave Technol. 10, 42-45 (1992). [CrossRef]
  13. O. Leminger and R. Zengerle, "Narrow-band directional couplers made of dissimilar single-mode fibers with different cladding refractive indexes," J. Lightwave Technol. 8, 1289-1291 (1990). [CrossRef]
  14. B. Malo, F. Bilodeau, K. O. Hill, D. C. Johnson, and J. Albert, "Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application a filter," Electron. Lett. 25, 1416-1417 (1989). [CrossRef]
  15. X. Su, A. Tan, X. Jia, Q. Pan, C. Xie, and K. Peng, "Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams," Opt. Lett. 31, 1133-1135 (2006). [CrossRef] [PubMed]
  16. N. K. Chen, S. Chi, and S. M. Tseng, "Narrow-band channel-dropping filter based on side-polished fiber with long interaction length," Jpn. J. Appl. Phys. 43, L475-L477 (2004). [CrossRef]
  17. O. Parriaux, S. Gidon, and A. A. Kuznetsov, "Distributed coupling on polished single-mode optical fibers," Appl. Opt. 20, 2420-2423 (1981). [CrossRef] [PubMed]
  18. M. J. F. Digonnet and H. J. Shaw, "Analysis of a tunable single mode optical fiber coupler," IEEE J. Quan. Electron. QE-18, 746-754 (1982). [CrossRef]
  19. M. J. F. Digonnet, J. R. Feth, L. F. Stokes, and H. J. Shaw, "Measurement of the core proximity in polished fiber substrates and couplers," Opt. Lett. 10, 463-465 (1985). [CrossRef] [PubMed]
  20. M. J. F. Digonnet, "Passive and Active Fiber Optic Components," Ph. D. Dissertation, Stanford University (1983).
  21. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited