OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17819–17826

Detection of quantum-dot labeled proteins using soft glass microstructured optical fibers

Yinlan Ruan, Erik P. Schartner, Heike Ebendorff-Heidepriem, Peter Hoffmann, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17819-17826 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The detection of quantum-dot labeled proteins is demonstrated within lead silicate soft glass microstructured optical fibers using near infrared light. The protein concentration is measured using a new fluorescence capture approach. Light guided within the fiber is used both to excite and collect fluorescent photons, and the detection limit achieved without optimization of the fiber geometry is 1 nM, using just 3% of the guided mode of the fiber. Issues that currently restrict the detection of lower protein concentrations are discussed.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 1, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: December 11, 2007
Published: December 13, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Yinlan Ruan, Erik P. Schartner, Heike Ebendorff-Heidepriem, Peter Hoffmann, and Tanya M. Monro, "Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  2. W. Urbanczyk, "Photonic crystal fibers: new opportunities for sensing," presented at the Third European Workshop on Optical Fiber Sensors, Italy, 4-6 July, 2007.
  3. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, and A. Bjarklev, "Hollow-core Bragg fiber as a bio-sensor," presented at the Third European Workshop on Optical Fiber Sensors, Italy, 4-6 July, 2007.
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. S?rensen, T. P. Hansen, AND H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  5. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  6. S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007). [CrossRef]
  7. S. Smolka, M. Barth, and O. Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007). [CrossRef] [PubMed]
  8. A. S. Webb, F. Poletti, D. J. Richardson and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing," Opt. Eng. 46, 010503 (2007). [CrossRef]
  9. W. Henry, "Evanescent field devices: a comparison between tapered optical fibers and polished or D-fibers," Opt. Quantum Electron. 26, S261-S272 (1994). [CrossRef]
  10. J. Lou, L. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005). [CrossRef] [PubMed]
  11. S. Afshar V., S. Warren-Smith, and T. M. Monro, "Fluorescence-based sensing within microstructured fibers," Opt. Express, in press, 2007. [CrossRef]
  12. http://www.schott.com/optics_devices/english/download/index.html.
  13. http://probes.invitrogen.com/products/qdot/.
  14. H. Ebendorff-Heidepriem, P. Petropoulos, R. C. Moore, K. Frampton, D. J. Richardson and T. M. Monro, "Fabrication and optical properties of lead silicate glass holey fibers," J. Non-Cryst. Solids 345-346, 293-296 (2004). [CrossRef]
  15. http://www.licor.com/bio/IRDyes/PL-IRDye800CW.jsp.
  16. http://www.schott.com/optics_devices/english/download/ti-36_fluorescence_of_optical_glass.pdf/.
  17. http://probes.invitrogen.com/resources/spectraviewer/.
  18. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, "Reduced loss in extruded micorstructured optical fiber," presented at the Australian Conference on Fibre Technology, Australia, 24-27 July 2007.
  19. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, " Fabrication and characterization of low loss rib chalcogenide waveguide made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef] [PubMed]
  20. T. Nakamura, H. Kimura, M. Kato, S. Kurashige and K. Wakamatsu, "A sensitive and reliable quantification method for mouse interleukin-12 p70 based on fluorometric sandwich ELISA (FS-ELISA)," Cell Biol. Int. 31, 173-179(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited