OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17912–17921

All-optical axially multi-regional super resolved imaging

Ido Raveh and Zeev Zalevsky  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17912-17921 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we present a new approach of all-optical extended depth of focus providing two (or more) discrete ranges of focused imaging for close as well as far ranges. The fact that the extended depth of focus is not continuous allows obtaining improved contrast in the two (or more) axial regions of extended depth of focus. The design is aimed for the cell phone camera applications where dual range extended depth of focus can allow simultaneous reading of business cards at very short distance as well as very high contrasted imaging at far range.

© 2007 Optical Society of America

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(170.1630) Medical optics and biotechnology : Coded aperture imaging

ToC Category:
Imaging Systems

Original Manuscript: October 11, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: December 13, 2007
Published: December 17, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Ido Raveh and Zeev Zalevsky, "All-optical axially multi-regional super resolved imaging," Opt. Express 15, 17912-17921 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. T. Cathy and E. R Dowski, "Apparatus and method for extending depth of field in image projection system," US patent 6069738 (May 2000).
  2. W. T. Cathy and E. R Dowski, "Extended depth of field optical systems," PCT publication WO 99/57599 (November 1999).
  3. W. T. Cathy, "Extended depth field optics for human vision," PCT publication WO 03/052492 (June 2003).
  4. E. R Dowski and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995). [CrossRef] [PubMed]
  5. J. van der Gracht, E. Dowski, M. Taylor and D. Deaver, "Broadband behavior of an optical-digital focus-invariant system," Opt. Lett. 21, 919-921 (1996). [CrossRef] [PubMed]
  6. C. M. Hammond, "Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field," US patent 6097856 (August 2000).
  7. D. Miller and E. Blanko, "System and method for increasing the depth of focus of the human eye," US patent 6554424 (April 2003).
  8. N. Atebara and D. Miller, "Masked intraocular lens and method for treating a patient with cataracts," US patent 4955904 (September 1990).
  9. J. O. Castaneda, E. Tepichin and A. Diaz, "Arbitrary high focal depth with a quasi optimum real and positive transmittance apodizer," Appl. Opt. 28, 2666-2669 (1989). [CrossRef]
  10. J. O. Castaneda and L. R. Berriel-Valdos, "Zone plate for arbitrary high focal depth," Appl. Opt. 29, 994-997 (1990). [CrossRef]
  11. E. Ben-Eliezer, Z. Zalevsky, E. Marom, N. Konforti and D. Mendlovic, "All optical extended depth of field imaging system," PCT publication WO 03/076984 (September 2003).
  12. E. Ben-Eliezer, Z. Zalevsky, E. Marom and N. Konforti, "All-optical extended depth of field imaging system," J. Opt. A: Pure Appl. Opt. 5, S164-S169 (2003). [CrossRef]
  13. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, "Experimental realization of an imaging system with an extended depth of field," Appl. Opt. 44, 2792-2798 (2005). [CrossRef] [PubMed]
  14. A. Sauceda and J. Ojeda-Castaneda, "High focal depth with fractional-power wavefronts," Opt. Lett. 29, 560-562 (2004). [CrossRef] [PubMed]
  15. W. Chi and N. George, "Electronic imaging using a logarithmic asphere," Opt. Lett. 26, 875-877 (2001). [CrossRef]
  16. Z. Zalevsky, "Optical method and system for extended depth of focus," US patent application 10/97494 (August 2004).
  17. Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben-Eliezer and E. Marom, "All-optical axial super resolving imaging using low-frequency binary-phase mask," Opt. Express 14, 2631-2643 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited