OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17948–17953

Perfect 4-way splitting in nano plasmonic X-junctions

Eyal Feigenbaum and Meir Orenstein  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17948-17953 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A plasmon wave is perfectly split to 4 identical waves when encountering nano intersection. This is substantially different from the dielectric waveguides case where power coupling to vertical segments is negligible. When larger multimode plasmonic junction is realized — beating and retardation come into effect. The analysis of the plasmonic coupling in this device is helpful also in understanding plasmonic assisted enhanced transmission.

© 2007 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: October 9, 2007
Revised Manuscript: December 11, 2007
Manuscript Accepted: December 11, 2007
Published: December 17, 2007

Eyal Feigenbaum and Meir Orenstein, "Perfect 4-way splitting in nano plasmonic X-junctions," Opt. Express 15, 17948-17953 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. N. Economou, "Surface Plasmons in thin films," Phys. Rev. 182, 539 (1969). [CrossRef]
  2. B. Prade, J.Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991). [CrossRef]
  3. E. Feigenbaum, M. Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607 (2007). [CrossRef] [PubMed]
  4. H.T. Miyazaki, Y. Kurokawa, "Squeezing Visible LightWaves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006) [CrossRef] [PubMed]
  5. H.J. Lezec, J.A. Dionne, H.A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430 (2007). [CrossRef] [PubMed]
  6. K. Tanaka, M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003) [CrossRef]
  7. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997) [CrossRef] [PubMed]
  8. B. Wang, G.P. Wang, "Metal heterowaveguides for nanometric focusing of light," Appl. Phys. Lett. 85, 3599 (2004) [CrossRef]
  9. P. Ginzburg, D. Arbel, M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288 (2006). [CrossRef] [PubMed]
  10. G. Veronis, S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211 (2007) [CrossRef] [PubMed]
  11. P. Ginzburg, M. Orenstein, "Plasmonic transmission lines: From micro to nano scale lambda/4 impedance matching", the 2007 1st European Topical Meeting on Nanophotonics and Metamaterials, Austria. Paper WED4f.60.
  12. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. A 21, 2442 (2006). [CrossRef]
  13. B. Wang, G.P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett. 29, 1992 (2004) [CrossRef] [PubMed]
  14. G. Veronis, S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102, (2005). [CrossRef]
  15. E. Feigenbaum, M. Orenstein, "Modeling of Complementary (Void) Plasmon Waveguiding," J. Lightwave Technol. 25, 2547 (2007). [CrossRef]
  16. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998). [CrossRef]
  17. C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.A. Haus, J.D. Joannopoulos, "High-Density Integrated Optics," J. Lightwave Technol. 17 (9), 1682 (1999). [CrossRef]
  18. E. D. Palik, Handbook of optical constants of solids, 2'nd Ed., (San-Diego: Academic, 1998).
  19. C. Genet, T.W. Ebbesen, "Light in tiny holes," Nature 445, 39 (2007). [CrossRef] [PubMed]
  20. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, H.J. Lezec, " The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2,262 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (255 KB)     
» Media 2: MOV (423 KB)     
» Media 3: MOV (362 KB)     
» Media 4: MOV (284 KB)     
» Media 5: MOV (362 KB)     
» Media 6: MOV (229 KB)     
» Media 7: MOV (217 KB)     
» Media 8: MOV (379 KB)     
» Media 9: MOV (356 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited