OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 18076–18081

Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton Method

Zhen Yuan, Qiang Wang, and Huabei Jiang  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18076-18081 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.

© 2007 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 10, 2007
Revised Manuscript: December 12, 2007
Manuscript Accepted: December 13, 2007
Published: December 18, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Zhen Yuan, Qiang Wang, and Huabei Jiang, "Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method," Opt. Express 15, 18076-18081 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. M. Kollkman, W. Steenbergen, and T. G. van Leeuwen, "Reflection mode photoacoustic measurement of seed of sound," Opt. Express 15, 3291-3300 (2007). [CrossRef]
  2. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, "Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis," Opt. Express 13, 89-95 (2005). [CrossRef] [PubMed]
  3. Z. Chen, Z. Tang, and W. Wan, "Photoacoustic tomography imaging based on a 4f acoustic lens imaging systems," Opt. Express 15, 4966-4976 (2007). [CrossRef] [PubMed]
  4. Z. Yuan, Q. Zhang, and H. Jiang, "Simultaneously reconstruction of acoustic and optical properties of heterogeneous medium by quantitative photoacoustic tomography," Opt. Express 14, 6749-6753 (2006). [CrossRef] [PubMed]
  5. R. A. Kruger, D. Reinecke, and G. Kruger, "Thermoacoustic computed tomography-technical considerations," Med. Phys. 26, 1832-1837 (1999). [CrossRef] [PubMed]
  6. G. Paltauf, J. Viator, S. Prahl, and S. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002). [CrossRef] [PubMed]
  7. S. J. Norton and T. Vo-Dinh, "Optoacoustic diffraction tomography: analysis of algorihms," J. Opt. Soc. Am. A 20, 1859-1866 (2003). [CrossRef]
  8. A. A. Karabutov, E. Savateeva, and A. Oraevsky, "Imaging of layered structures in biological tissues with opto-acoustic front surface transducer," Proc. SPIE 3601, 284-295(1999). [CrossRef]
  9. C. G. A. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessls in tissue," Opt. Lett. 23, 648-650 (1998). [CrossRef]
  10. H. Jiang, Z. Yuan, and X. Gu, "Spatially varying optical and acoustic property reconstruction using finite element-based photoacoustic tomography," J. Opt. Soc. Am. A 23, 878-888 (2006). [CrossRef]
  11. J. Ripoll and V. Ntziachristos, "Quantitative point source photoacoustic inversion formulas for scattering and absorbing medium," Phys. Rev. E 71, 031912 (2005). [CrossRef]
  12. Z. Yuan and H. Jiang, "Quantitative photoacoustic tomography: recovery of optical absorption coefficient map of heterogeneous medium," Appl. Phys. Lett. 88, 231101 (2006). [CrossRef]
  13. B. Cox, S. Arridge, K. Kostli and P. Beard, "2D quantitative photoacoustic image reconstruction of absorption distributions in scattering medium using a simple iterative method," Appl. Opt. 45, 1866-1875 (2006). [CrossRef] [PubMed]
  14. L. Yin, Q. Wang, Q. Zhang, H. Jiang, "Tomographic imaging of absolute optical absorption coefficient in turbid medium using combing photoacoustic and diffusing light measurements," Opt. Lett. 32, 2556-2558 (2007). [CrossRef] [PubMed]
  15. N. Iftimia and H. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000). [CrossRef]
  16. P. Yalavarthy, H. Dehghani, B. Pogue and K. D. Paulsen, "Wight-matrix structured regularization provide optimal generalized least-square in diffuse optical tomography," Med. Phys. 34, 2085-2098 (2007). [CrossRef] [PubMed]
  17. Z. Yuan and H. Jiang, "Three-dimensional finite element-based photoacoustic tomography: Reconstruction algorithm and simulations," Med. Phys. 34, 538-546 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited