OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 18089–18102

The finite element method as applied to the diffraction by an anisotropic grating

Guillaume Demésy, Frédéric Zolla, André Nicolet, Mireille Commandré, and Caroline Fossati  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18089-18102 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The main goal of the method proposed in this paper is the numerical study of various kinds of anisotropic gratings deposited on isotropic substrates, without any constraint upon the diffractive pattern geometry or electromagnetic properties. To that end we propose a new FEM (Finite Element Method) formulation which rigorously deals with each infinite issue inherent to grating problems. As an example, 2D numerical experiments are presented in the cases of the diffraction of a plane wave by an anisotropic aragonite grating on silica substrate (for the two polarization cases and at normal or oblique incidence). We emphasize the interesting property that the diffracted field is non symmetric in a geometrically symmetric configuration.

© 2007 Optical Society of America

OCIS Codes
(000.0000) General : General

ToC Category:
Diffraction and Gratings

Original Manuscript: October 30, 2007
Revised Manuscript: November 26, 2007
Manuscript Accepted: November 27, 2007
Published: December 20, 2007

Guillaume Demésy, Frédéric Zolla, André Nicolet, Mireille Commandré, and Caroline Fossati, "The finite element method as applied to the diffraction by an anisotropic grating," Opt. Express 15, 18089-18102 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kikuta, H. Toyotai, and W. Yul, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10, 63-73 (2003) [CrossRef]
  2. E. N. Glytsis and T. K. Gaylord, "High-spatial-frequency binary and multilevel stairstep gratings: Polarizationselective mirrors and broadband antireflection surfaces," Appl. Opt. 31, 4459-4470 (1992). [CrossRef] [PubMed]
  3. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, "Design of a high-efficiency volume grating coupler for line focusing," Appl. Opt. 37, 2278-2287 (1998). [CrossRef]
  4. K. Knop, "Diffraction gratings for color filtering in the zero diffraction order (ET)," Appl. Opt. 17, 3598-3603 (1978). [CrossRef] [PubMed]
  5. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  6. K. Rokushima, J. Yamanaka, "Analysis of anisotropic dielectric gratings," J. Opt. Soc. Am. 73, 901-908 (1983). [CrossRef]
  7. E. N. Glytsis and T. K. Gaylord, "Rigorous three-dimensionnal coupled-wave diffraction analysis of single and cascaded anisotropic gratings," J. Opt. Soc. Am. A 4, 2061-2080 (1987). [CrossRef]
  8. J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. (Paris) 11, 235241 (1980). [CrossRef]
  9. L. Li, "Oblique-coordinate-system-based Chandezon method for modeling one-dimensionally periodic, multilayer, inhomogeneous, anisotropic gratings," J. Opt. Soc. Am. A 16, 2521-2531 (1999). [CrossRef]
  10. K. Watanabe, "Numerical integration schemes used on the differential theory for anisotropic gratings," J. Opt. Soc. Am. A 19, 2245-2252 (2002). [CrossRef]
  11. D. Maystre, "A new general integral theory for dielectric coated gratings," J. Opt. Soc. Am. 68, 490-495 (1978). [CrossRef]
  12. V. V. Belyaev, E. M. Kushnir, A. V. Klyshkov, and V. I. Tsoi, "Numerical modeling of the diffraction of light at periodic anisotropic gratings with rectangular surface microrelief," J. Opt. Technol. 72, 725-728 (2005). [CrossRef]
  13. K. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  14. W. M. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005). [CrossRef] [PubMed]
  15. T. Delort and D. Maystre, "Finite-element method for gratings," J. Opt. Soc. Am. A 10, 2592-2601 (1993). [CrossRef]
  16. Y. Ohkawa, Y. Tsuji, and M. Koshiba, "Analysis of anisotropic dielectric grating diffraction using the finiteelement method," J. Opt. Soc. Am. A 13, 1006-1012 (1996). [CrossRef]
  17. Gang Bao, Zhiming Chen, and Haijun Wu, "Adaptive finite-element method for diffraction gratings," J. Opt. Soc. Am. A 22, 1106-1114 (2005). [CrossRef]
  18. F. Zolla and R. Petit, "Method of fictitious sources as applied to the elctromagnetic diffraction of a plane wave by a grating in conical mounts," J. Opt. Soc. Am. A 13, 796-802 (1996). [CrossRef]
  19. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  20. G. Tayeb, "Contributionàlétude de la diffraction des ondes électromagn étiques par des r éseaux. R éflexions sur les méthodes existantes et sur leur extension aux milieux anisotropes,’Université Paul Cézanne, PhD Thesis’ 1990.
  21. N. Kono and Y. Tsuji, "A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides," J. Lightwave Technol. 22, 1741-1747 (2004). [CrossRef]
  22. A. F. Zhou, J. K. Erwin, C. F. Brucker, and M. Mansuripur, "Dielectric tensor characterization for magnetooptical recording media," Appl. Opt. 31, 6280-6286 (2005). [CrossRef]
  23. G. Granet, "Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution," J. Opt. Soc. Am. A 16, 2510-2516 (1999). [CrossRef]
  24. R. Petit, Electromagnetic Theory of Gratings, (Springer Verlag, 1980).
  25. F. Zolla, G. Renversez, A. Nicolet, B. Khulmey, S. Guenneau, D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, London, 2005). [CrossRef]
  26. A. Nicolet, S. Guenneau, C. Geuzaine, and F. Zolla, "Modeling of electromagnetic waves in periodic media with finite elements," J. Comput. Appl. Math. 168 (1-2), 321-329 (2004). [CrossRef]
  27. Y. Ould Agha, F. Zolla, A. Nicolet, S. Guenneau, "On the use of PML for the computation of leaky modes: an application to Microstructured Optcal Fibres," The In.J. Comput. Math. Elect. Elect. Eng. 27, 95-109 (2008).
  28. A. Nicolet, F. Zolla, Y. Ould Agha, and S. Guenneau, "Leaky modes in twisted microstructured optical fibres," Waves Random Media,  17:4, 559-570 (2007).
  29. M. Lassas, J. Liukkonen and E. Somersalo, "Complex riemannian metric and absorbing boundary condition," J. Math Pures Appl. 80, 739-768 (2001).
  30. M. Lassas and E. Somersalo, "Analysis of the PML equations in general convex geometry," Proc. R. Soc. Edinburgh 131, 1183-1207 (2001). [CrossRef]
  31. G. Bao and H. Wu, "On the convergence of the solutions of PML equations for time harmonic Maxwell’s equations," SIAM (Soc. Ind. Appl. Math.)J. Numer. Anal. 43, 2121-2143 (2005). [CrossRef]
  32. P. Helluy, S. Maire, and P. Ravel, "Intégrations numériques d’ordre élevé de fonctions régulières ou singulières sur un intervalle," CR. Acad. Sci. Paris, Ser. I, Math,  327, 843-848 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited