OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 18176–18189

Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers

Mirosław Florjańczyk, Pavel Cheben, Siegfried Janz, Alan Scott, Brian Solheim, and Dan-Xia Xu  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18176-18189 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (275 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Concept, theory and simulations of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer, are presented. The spectrometer is formed by an array of Mach-Zehnder interferometers generating a wavelength dependent spatial fringe pattern at the array output. The input light spectrum is calculated using a discrete Fourier transformation of the output spatial fringes. The multiaperture input significantly increases the optical throughput (étendue) compared to conventional single input spectrometers. Design rules for the arrayed spectrometer are deduced from performance specifications such as wavelength range and spectral resolution. A design example with spectral resolution 0.025 nm and range 2.5 nm is presented, where the optical throughput is increased by a factor of 200 compared to a single input device.

© 2007 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.7390) Optical devices : Waveguides, planar
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 7, 2007
Revised Manuscript: December 17, 2007
Manuscript Accepted: December 18, 2007
Published: December 19, 2007

Miroslaw Florjanczyk, Pavel Cheben, Siegfried Janz, Alan Scott, Brian Solheim, and Dan-Xia Xu, "Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Express 15, 18176-18189 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Cheben, "Wavelength dispersive planar waveguide devices: Echelle gratings and arrayed waveguide gratings," in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Laksminarayanan, eds. (CRC Press, London, 2007).
  2. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with submicrometer aperture waveguides," Opt. Express 15, 2299-2306 (2007). [CrossRef] [PubMed]
  3. P. Jacquinot, "The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons," J. Opt. Soc. Am. 44, 761-765 (1954). [CrossRef]
  4. P. B. Fellgett, "The theory of infra-red sensitivities and its application to investigations of stellar radiation in the near infra-red," Ph.D. dissertation (University of Cambridge, Cambridge, UK, 1951).
  5. P. Fellgett, "A propos de la théorie du spectromètre interférentiel multiplex," J. Phys. Radium 19, 187-191 (1958). [CrossRef]
  6. M.-L. Junttila, J. Kauppinen, and E. Ikonen, "Performance limits of stationary Fourier spectrometers," J. Opt. Soc. Am. A 8, 1457-1462 (1991). [CrossRef]
  7. J. Harlander, R. J. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992). [CrossRef]
  8. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, "Wavelength-dispersive device based on a Fourier-transform Michelson-type arrayed waveguide grating," Opt. Lett. 30, 1824-1826 (2005). [CrossRef] [PubMed]
  9. J. A. Rodrigo, P. Cheben, T. Alieva, M. L. Calvo, M. Florja?czyk, S. Janz, A. Scott, B. Solheim, D.-X. Xu, and A. Delâge, "Fresnel diffraction effects in Fourier-transform arrayed waveguide grating spectrometer," Opt. Express 15, 16431-16441 (2007). [CrossRef] [PubMed]
  10. M. Florja?czyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Planar waveguide spatial heterodyne spectrometer," Proc. SPIE 6796, 67963J-1 (2007).
  11. I. Powell and P. Cheben, "Modeling of the generic spatial heterodyne spectrometer and comparison with conventional spectrometer," Appl. Opt. 45, 9079-9086 (2006). [CrossRef] [PubMed]
  12. F. C. Garcia, L. Vogelaar, and R. Kashyap, "Poling of a channel waveguide," Opt. Express 11, 3041-3047 (2003). [CrossRef] [PubMed]
  13. W. H. Steel, "Symbols Units Nomenclature: Luminosity, throughput, or etendue? Further comments," Appl. Opt. 14, 252-253 (1974). [CrossRef]
  14. Ch. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, New York, 1999).
  15. J. Chamberlain, The Principles of Interferometric Spectroscopy (Wiley-Interscience, Chichester, UK, 1979).
  16. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, Hoboken, New Jersey, 2007). [CrossRef]
  17. A. H. Filler, "Apodization and interpolation in Fourier-transform spectroscopy," J. Opt. Soc. Am. 54, 762-767 (1964). [CrossRef]
  18. R. H. Norton and R. Beer, "New apodizing functions for Fourier spectrometry," J. Opt. Soc. Am. 66, 259-264 (1976); erratum: 67, 419 (1977), http://www.opticsinfobase.org/abstract.cfm?URI=josa-67-3-419. [CrossRef]
  19. J. K. Kauppinen, D. J. Moffatt, D. G. Cameron, and H. H. Mantsch, "Noise in Fourier self-deconvolution," Appl. Opt. 20, 1866-1879 (1981). [CrossRef] [PubMed]
  20. K. Takada, Y. Inoue, H. Yamada and M. Horiguchi, "Measurement of phase error distributions in silica-based arrayed-waveguide grating multiplexers by using Fourier transform spectroscopy," Electron. Lett. 30, 1671-1672 (1994). [CrossRef]
  21. K. Takada, T. Tanaka, M. Abe, T. Yanagisawa, M. Ishii, and K. Okamoto, "Beam-adjustment-free crosstalk reduction in 10GHz-spaced arrayed-waveguide grating via photosensitivity under UV laser irradiation through metal mask," Electron. Lett. 36, 60-61 (2000). [CrossRef]
  22. H. Yamada, K. Takada, Y. Inoue, Y. Ohmori, and S. Mitachi, "Statically-phase-compensated 10GHzspaced arrayed-waveguide grating," Electron. Lett.  32, 1580-1582-61 (1996). [CrossRef]
  23. B. Solheim, "Spatial Heterodyne Spectroscopy (SHS), Spatial Heterodyne Observations of Water (SHOW)," presented at the 12-th ASSFTS (Atmospheric Science from Space using Fourier Transform Spectrometry) workshop, Quebec City, Canada, 18 May 2005.
  24. Y. Lin, G. Shepherd, B. Solheim, M. Shepherd, S. Brown, J. Harlander, and J. Whiteway, "Introduction to spatial heterodyne observations of water (SHOW) project and its instrument development," Proc. XIV Int. TOVS Study Conf., 25-31 May 2005, Beijing, China, 835-843 (2005).
  25. G. P. Shepherd, Spectral Imaging of the Atmosphere (Academic Press, London, UK, 2002).
  26. S. Janz, "Silicon-based waveguide technology for wavelength division multiplexing," in Silicon Photonics, L. Pavesi and D. J. Lockwood, eds. (Springer-Verlag, Berlin, 2004). [CrossRef]
  27. L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, "Technology challenges for space interferometry: the option of mid-infrared integrated optics," Adv. Space Res., in press, available online 20 July 2007, http://dx.doi.org/10.1016/j.asr.2007.07.013.
  28. R. A. Soref, S. J. Emelett, and W. R. Buchwald, "Silicon waveguided components for the long-wave infrared region," J. Opt. A: Pure Appl. Opt. 8, 840-848 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited