OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 18283–18293

Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals

Amir Tal, Yun-Sheng Chen, Henry E. Williams, Raymond C. Rumpf, and Stephen M. Kuebler  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 18283-18293 (2007)
http://dx.doi.org/10.1364/OE.15.018283


View Full Text Article

Enhanced HTML    Acrobat PDF (5526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional metallodielectric photonic crystals were created by fabricating a micron-scale polymeric template using multi-photon direct laser writing (DLW) in SU-8 and conformally and selectively coating the template with copper (Cu) via nanoparticle-nucleated electroless metallization. This process deposits a uniform metal coating, even deep within a lattice, because it is not directional like sputter-coating or evaporative deposition. Infrared reflectance spectra show that upon metallization the optical behavior transitions fully from a dielectric photonic crystal to that of a metal photonic crystal (MPC). After depositing 50 nm of Cu, the MPCs exhibit a strong plasmonic stop band having reflectance greater than 80% across the measured part of the band and reaching as high as 95% at some wavelengths. Numerical simulations match remarkably well with the experimental data and predict all dominant features observed in the reflectance measurements, showing that the MPCs are structurally well formed. These data show that the Cu-based process can be used to create high performance MPCs and devices that are difficult or impossible to fabricate by other means.

© 2007 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Photonic Crystals

History
Original Manuscript: October 12, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: December 19, 2007
Published: December 20, 2007

Citation
Amir Tal, Yun-Sheng Chen, Henry E. Williams, Raymond C. Rumpf, and Stephen M. Kuebler, "Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals," Opt. Express 15, 18283-18293 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-18283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B 52, 11744-11751 (1995). [CrossRef]
  2. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996). [CrossRef]
  3. J.-M. Lourtioz, and A. de Lustrac, "Metallic photonic crystals," C. R. Phys. 3, 79-88 (2002). [CrossRef]
  4. J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature 417, 52-55 (2002). [CrossRef] [PubMed]
  5. S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, "Achieving a photonic band edge near visible wavelengths by metallic coatings," J. Appl. Phys. 99, 083104-1-083104-4 (2006). [CrossRef]
  6. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  7. D. F. Sievenpiper, E. Yablonovitch, J. N. Winn, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands," Phys. Rev. Lett. 80, 2829-2832 (1998). [CrossRef]
  8. H. Benisty, V. Berger, J. Gerard, D. Maytre, and A. Tchelnokov, Photonic Crystals: Toward Nanoscale Photonic Devices, (Springer, Berlin, 2005).
  9. S. Y. Lin, S. Moreno, and G. R. Fleming, "Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation," Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  10. J.-H. Lee, C.-H. Kim, Y.-S. Kim, K.-M. Ho, K. Constant, and C. H. Oh, "Three-dimensional metallic photonic crystals fabricated by soft lithography for midinfrared applications," Appl. Phys. Lett. 88, 181112 (2006). [CrossRef]
  11. J.-H. Lee, Y.-S. Kim, K. Constant, and K.-M. Ho, "Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission," Adv. Mater. 19, 791-794 (2007). [CrossRef]
  12. R. A. Shelby, D. R. Smith, and S. Schulz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  13. Y. Wang, M. Ibisate, A.-Y. Li, and Y. Xia, "Metallodielectric photonic crystals assembled from monodisperse spherical colloids of bismuth and lead," Adv. Mater. 18, 471-476 (2006). [CrossRef]
  14. M. E. Kozlov, N. S. Murthy, I. Udod, I. I. Khayrullin, R. H. Baughman, and A. A. Zakhidov, "Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals," Appl. Phys. A 86, 421-425 (2007). [CrossRef]
  15. Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, "Fabrication and characterization of three-dimensional silver-coated polymeric microstructures," Adv. Funct. Mater. 16, 1739-1744 (2006). [CrossRef]
  16. S. M. Kuebler, A. Tal, and Y.-S. Chen. "Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band," SPIE 6462, 646213-1 - 646213-6 (2007).
  17. Y.-S. Chen, A. Tal, and S. M. Kuebler, "Route to three-dimensional metallized micro-structures using cross-linkable epoxide SU-8," Chem. Mater. 19, 3858 - 3860 (2007). [CrossRef]
  18. R. A. Farrer, C. N. LaFratta, L. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, "Selective functionalization of 3-D polymer microstructures," J. Am. Chem. Soc. 128, 1796-1797 (2006). [CrossRef] [PubMed]
  19. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, "Three-dimensional fabrication of metallic nanostructure over large areas by two-photon polymerization," Opt. Express 14, 800-809 (2006). [CrossRef] [PubMed]
  20. V. Mizeikis, S. Juodkazis, R. Tarozait?, J. Juodkazyt?, K. Juodkazis, and H. Misawa, "Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region," Opt. Express 15, 8454-8464 (2007). [CrossRef] [PubMed]
  21. S. M. Kuebler, and M. Rumi, "Nonlinear optics -- applications: three-dimensional microfabrication," in Encyclopedia of Modern Optics, R. D. Guenther, D. G. Steel, and L. Bayvel; eds. (Elsevier, Oxford, 2004).
  22. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  23. G. Odian, Principles of Polymerization, in 4th ed., (Wiley, New York, 2004). [CrossRef]
  24. L. J. Guerin, M. Bossel, M. Demierre, S. Calmes, and P. Renaud. "Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic." Proc. Int. Solid State Sensors & Actuators Conf. (Chicago). 16-19 June 1997, Vol.  2, p. 1419. [CrossRef]
  25. A. Tal, "Three-dimensional micron-scale metal photonic crystals via multi-photon direct laser writing and electroless metal deposition." Masters thesis, CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA (2007). [PubMed]
  26. W. H. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H.-J. Güntherodt, "SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication," Appl. Phys. Lett. 84, 4095-4097 (2004). [CrossRef]
  27. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002). [CrossRef] [PubMed]
  28. R. C. Rumpf, A. Tal, and S. M. Kuebler, "Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method," J. Opt. Soc. Am. A 24, 3123-3134 (2007). [CrossRef]
  29. R. Rumpf, and E. G. Johnson, "Comprehensive modeling of near-field nano-patterning," Opt. Express 13, 7198-7208 (2005). [CrossRef] [PubMed]
  30. R. C. Rumpf, and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004). [CrossRef]
  31. M. Deubel, G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef]
  32. M. J. Weber, Handbook of Optical Materials, (CRC Press, New York, 2003).
  33. T. Holstein, "Optical and infrared volume absorptivity of metals," Phys. Rev. 96, 535-536 (1954). [CrossRef]
  34. A. M. Fox, Optical Properties of Solids, (Oxford Univ. Press, Oxford, 2002).
  35. S. Roberts, "Optical properties of copper," Phys. Rev. 118, 1509-1518 (1960). [CrossRef]
  36. A. L. Stepanov, D. E. Hole, and P. D. Townsend, "Optical reflectance of insulators containing implanted metal nanoparticles," Nucl. Instrum. Methods Phys. Res. B 161-163, 913-916 (2000). [CrossRef]
  37. S. Malynych, and G. Chumanov, "Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays," J. Am. Chem. Soc. 125, 2896-2898 (2003). [CrossRef] [PubMed]
  38. K.-M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  39. R. L. Cervantes, L. E. Murr, and R. M. Arrowood, "Copper nucleation and growth during the corrosion of aluminum alloy 2524 in sodium chloride solutions," J. Mater. Sci. 36, 4079-4088 (2001). [CrossRef]
  40. S. G. Johnson, and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, (Kluwer, Boston, 2002).
  41. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5227 (2004). [CrossRef] [PubMed]
  42. S. Link, and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103, 8410-8426 (1999). [CrossRef]
  43. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005). [CrossRef]
  44. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299-15302 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited