OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1011–1023

Depth from automatic defocusing

V. Aslantas and D.T. Pham  »View Author Affiliations


Optics Express, Vol. 15, Issue 3, pp. 1011-1023 (2007)
http://dx.doi.org/10.1364/OE.15.001011


View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a depth recovery method that gives the depth of any scene from its defocused images. The method combines depth from defocusing and depth from automatic focusing techniques. Blur information in defocused images is utilised to measure depth in a way similar to determining depth from automatic focusing but without searching for sharp images of objects. The proposed method does not need special scene illumination and involves only a single camera. Therefore, there are no correspondence, occlusion and intrusive emissions problems. The paper gives experimental results which demonstrate the accuracy of the method.

© 2007 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(150.5670) Machine vision : Range finding
(150.6910) Machine vision : Three-dimensional sensing

ToC Category:
Machine Vision

History
Original Manuscript: October 27, 2006
Revised Manuscript: January 3, 2007
Manuscript Accepted: January 8, 2007
Published: February 5, 2007

Citation
V. Aslantas and D. T. Pham, "Depth from automatic defocusing," Opt. Express 15, 1011-1023 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1011


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. F. El-Hakim, J.-A. Beraldin, and F. Blais, "A Comparative Evaluation of the Performance of Passive and Active 3D Vision Systems," in Digital Photogrammetry and Remote Sensing, Eugeny A. Fedosov, Ed., Proc. SPIE 2646, 14-25 (1995). [CrossRef]
  2. M. Hebert, "Active and passive range sensing for robotics," in Proceedings of IEEE Conference on Robotics and Automation, (Institute of Electrical and Electronics Engineers, San Francisco, CA, 2000), pp. 102-110.
  3. E. P. Krotkov, "Focusing," Int. J. Compt. Vision 1, 223-237 (1987). [CrossRef]
  4. T. Darell and K. Wohn, "Depth from Focus using a Pyramid Architecture," Pattern Recogn. Lett. 11, 787-796 (1990). [CrossRef]
  5. S. K. Nayar and Y. Nakagawa, "Shape from Focus: An Effective Approach for Rough Surfaces," in Proceedings of IEEE Conference on Robotics and Automation, (Institute of Electrical and Electronics Engineers, Cincinnati, Ohio, 1990), pp. 218-225.
  6. H. N. Nair and C. V. Stewart, "Robust Focus Ranging," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (Institute of Electrical and Electronics Engineers, Illinois, 1992), pp. 309-314.
  7. D. T. Pham and V. Aslantas, "Automatic Focusing," in Birinci Turk Yapay Zeka ve Yapay Sinir Aglari Sempozyumu, (Bilkent Universitesi, Ankara, 1992), pp. 295-303.
  8. M. Subbarao and T. Wei, "Depth from Defocus and Rapid Autofocusing: A Practical Approach," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (Institute of Electrical and Electronics Engineers, Champaign, Illinois, 1992), pp. 773-776.
  9. M. Subbarao and T. Choi, "Accurate Recovery of Three Dimensional Shape from Focus," IEEE Trans. Pattern Anal. Mach. Intell. 17, 266-274 (1995). [CrossRef]
  10. M. Subbarao and J. K. Tyan, "Selecting the optimal focus measure for autofocusing and depth-from-focus," IEEE Trans. Pattern Anal. Mach. Intell. 20, 864-870 (1998). [CrossRef]
  11. N. Asada, H. Fujiwara and T. Matsuyama, "Edge and depth from focus," Int. J. Comput. Vision 26, 153-163 (1998). [CrossRef]
  12. Bilal Ahmad and Tae-Sun Choi, "A heuristic approach for finding best focused shape," IEEE Trans. Circuits Syst. 15, 566-574 (2005).
  13. P. Grossmann, "Depth from Focus," Pattern Recogn. Lett. 5, 63-69 (1987). [CrossRef]
  14. A. P. Pentland, "A New Sense for Depth of Field," IEEE Trans. Pattern Anal. Mach. Intell. 9, 523-531 (1987). [CrossRef] [PubMed]
  15. M. Subbarao and N. Gurumoorthy, "Depth Recovery from Blurred Edges," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (Institute of Electrical and Electronics Engineers, Ann Arbor, MI, 1988), pp.498-503.
  16. M. Subbarao, "Efficient Depth Recovery through Inverse Optics," Machine Vision Inspection and Measurement, H. Freeman ed., (Academic, Boston, 1989).
  17. C. Cardillo and M. A. Sid-Ahmed, "3-D Position Sensing using Passive Monocular Vision System," IEEE Trans. Pattern Anal. Mach. Intell. 13, 809-813 (1991). [CrossRef]
  18. R. V. Dantu, N. J. Dimopoulos, R. V. Patel, and A. J. Al-Khalili, "Depth Perception using Blurring and its Application in VLSI Wafer Probing," Mach. Vision Appl. 5, 35-45 (1992). [CrossRef]
  19. S. H. Lai, C. W. Fu, and S. Chang, "A Generalised Depth Estimation Algorithm with a Single Image," IEEE Trans. Pattern Anal. Mach. Intell. 14, 405-411 (1992). [CrossRef]
  20. J. Ens and P. Lawrence, "Investigation of Methods for Determining Depth from Focus," IEEE Trans. Pattern Anal. Mach. Intell. 15, 97-108 (1993). [CrossRef]
  21. L. F. Holeva, "Range Estimation from Camera Blur by Regularised Adaptive Identification," Int. J. Pattern Recogn. Artif. Intell. 8, 1273-1300 (1994). [CrossRef]
  22. A. P. Pentland, S. Scherock, T. Darrell, and B. Girod, "Simple Range Cameras based on Focal Error," J. Opt. Soc. Am. A 11, 2925-2934 (1994). [CrossRef]
  23. M. Subbarao and G. Surya, "Depth from Defocus: A Spatial Domain Approach," Int. J. Comput. Vision 13, 271-294 (1994). [CrossRef]
  24. S. Xu, D. W. Capson, and T. M. Caelli, "Range Measurement from Defocus Gradient," Mach. Vision Appl. 8, 179-186 (1995). [CrossRef]
  25. M. Watanabe and S. K. Nayar, "Rational filters for passive depth from defocus," Int. J. Comput. Vision 27, 203-225 (1998). [CrossRef]
  26. N. Asada, H. Fujiwara, and T. Matsuyama, "Particle depth measurement based on depth-from-defocus," Opt. Laser Technol. 31, 95-102 (1999). [CrossRef]
  27. S. Chaudhuri and A. N. Rajagopalan, "Depth from Defocus: A Real Aperture Imaging Approach," (Springer-Verlag New York, Inc. 1999).
  28. D. T. Pham and V. Aslantas, "Depth from Defocusing using a Neural Network," J. Pattern Recogn. 32, 715-727 (1999). [CrossRef]
  29. M. Asif, and T. S. Choi, "Shape from focus using multilayer feedforward neural networks," IEEE Trans. Image Process. 10, 1670-1675 (2001). [CrossRef]
  30. J. Rayala, S. Gupta, and S. K. Mullick, "Estimation of depth from defocus as polynomial system identification," IEE Proceedings, Vision, Image and Signal Processing 148, 356-362 (2001). [CrossRef]
  31. P. Favaro, A. Mennucci, and S. Soatto, "Observing Shape from Defocused Images," Int. J. Comput. Vision 52, 25-43 (2003). [CrossRef]
  32. D. Z. F. Deschenes, "Depth from Defocus Estimation in Spatial Domain," Computer Vision and Image Understanding 81, 143-165 (2001). [CrossRef]
  33. P. Favaro and S. Soatto, "Learning Shape from Defocus," in European Conference on Computer Vision, (Copenhagen, Denmark, 2002), pp.735-45.
  34. V. Aslantas and M. Tunckanat, "Depth from Image Sharpness using a Neural Network," in International Conference on Signal Processing, (Canakkale, Turkey, 2003), pp. 260-265.
  35. V. Aslantas, "Estimation of Depth From Defocusing using a Neural Network," in International Conference on Signal Processing, (Canakkale, Turkey, 2003), pp. 305-309.
  36. V. Aslantas and M. Tunçkanat, "Depth of General Scenes from Defocused Images Using Multilayer Feedforward Network," LNCS 3949, 41-48 (2006).
  37. B. K. P. Horn, Robot Vision, (McGraw-Hill, New York, 1986).
  38. R. A. Jarvis, "Focus Optimisation Criteria for Computer Image Processing," Microscope,  24, 163-180 (1976).
  39. J. F. Schlag, A. C. Sanderson, C. P. Neuman, and F. C. Wimberly, "Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control," CMU-RI-TR-83-14, (Robotics Institution, Carnegie Mellon University, 1983).
  40. F. C. A. Groen, I. T. Young, and G. Ligthart, "A Comparison of Different Focus Functions for use in Autofocus Algorithms," Cytometry,  6, 81-91 (1985). [CrossRef] [PubMed]
  41. L. Firestone, K. Cook, K. Culp, N. Talsania, and Jr. K . Preston, "Comparison of Autofocus Methods for Automated Microscopy," Cytometry,  12, 195-206 (1991). [CrossRef] [PubMed]
  42. M. Subbarao, T. Choi, and A. Nikzat, "Focusing Techniques," Optical Engineering,  32, 2824-2836 (1993). [CrossRef]
  43. T. T. E. Yeo, S. H. Ong, Jayasooriah, and R. Sinniah, "Autofocusing for Tissue Microscopy," J. Image and Vision Computing,  11, 629-639 (1993). [CrossRef]
  44. V. Aslantas, "Criterion functions for automatic focusing," in 10. Turkish Symposium on Artificial Intelligence and Neural Networks, (Gazimagusa, Turkish Republic of Northern Cyprus 2001), pp.301-311.
  45. R. C. Gonzalez and R. E. Woods, "Digital Image Processing," (Addison-Wesley, Reading, MA 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited