OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1096–1106

Evaluation and illustration of the properties of Metamaterials using field summation

Olivier Acher, Jean-Marie Lerat, and Nicolas Malléjac  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 1096-1106 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The prediction and the engineering of the electromagnetic properties of metamaterials are increasingly important issues. Recently, several approaches have been proposed to compute these properties through appropriate averages of local fields within the unit cell. In particular, we proposed a Field Summation method that has been used successfully to determine either analytically or numerically the effective properties of different composites and metamaterials. But this method also provides interesting clues for understanding the behaviour of these materials. It helps chose appropriate planes to visualize the fields using electromagnetic simulation software, and understand behaviours leading to either positive or negative effective parameters, with either small or large values. It helps establish whether the materials can be adequately described by effective parameters.

© 2007 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(350.4010) Other areas of optics : Microwaves

ToC Category:

Original Manuscript: November 27, 2006
Revised Manuscript: January 19, 2007
Manuscript Accepted: January 19, 2007
Published: February 5, 2007

Olivier Acher, Jean-Marie Lerat, and Nicolas Malléjac, "Evaluation and illustration of the properties of Metamaterials using field summation," Opt. Express 15, 1096-1106 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, "Experimental observation of true left-handed transmission peak in metamaterials," Opt. Lett. 29, 2623 (2004). [CrossRef] [PubMed]
  2. C.  Enkrich, M.  Wegener, S.  Linden, S.  Burger, L.  Zschiedrich, F.  Schmidt, J. F.  Zhou, Th.  Koschny, and C. M.  Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett.  95, 203901 (2005). [CrossRef] [PubMed]
  3. T. Decoopman, A. Marteau, E. Lheurette, O. Vanbésien and D. Lippens, "Left-Handed Electromagnetic Properties of Split-Ring Resonator and Wire Loaded Transmission Line in a Fin-Line Technology," IEEE Trans. MTT 54, 1451-1457 (2006). [CrossRef]
  4. V. M.  Shalaev, W.  Cai, U. K.  Chettiar, H.-K.  Yuan, A. K.  Sarychev, V. P.  Drachev, and A. V.  Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett.  30, 3356-3358 (2005). [CrossRef]
  5. A. N.  Grigorenko, A. K.  Geim, H. F.  Gleeson, Y.  Zhang, A. A.  Firsov, I. Y.  Khrushchev, and J.  Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature  438, 335-338 (2005). [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  7. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  8. V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, "Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites," Opt. Express 14, 11164-11177 (2006). [CrossRef] [PubMed]
  9. W. J.  Padilla, D. R.  Smith, and D. N.  Basov, "Spectroscopy of metamaterials from infrared to optical frequencies," J. Opt. Soc. Am. B  23, 404 (2006). [CrossRef]
  10. O. Reynet, O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett. 84, 1198-2000 (2004). [CrossRef]
  11. S. Tretyakov, Analytical modelling in Applied Electromagnetics, (Artech House, 2003).
  12. K. N. Rozanov and E. A. Preobrazhenskii, "Synthesis of wideband radar absorbers based on complex media composed from active electric Dipoles," J. Commun. Technol. Electron. 50, 858-864 (2005).
  13. A.-L. Adenot-Engelvin, C. Dudek and O. Acher, "Microwave permeability of metamaterials based on ferromagnetic composites," J. Magn. Magn. Mater. 300, 33-37 (2006). [CrossRef]
  14. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  15. R. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662-681 (2003). [CrossRef] [PubMed]
  16. D. Seetharamdoo, R. Sauleau, K. Mahdjoubi and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys. 98, 063505 (2005). [CrossRef]
  17. B. I.  Popa and S. A.  Cummer, "Wave fields measured inside a negative refractive index metamaterial," Appl. Phys. Lett.  85, 4564-4566 (2004). [CrossRef]
  18. D. R.  Smith and J. B.  Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B  23, 391-403 (2006). [CrossRef]
  19. J.-M. Lerat, N. Malléjac and O. Acher, "Determination of the effective parameters of a metamaterial by field summation method," J. Appl. Phys. 100, 084908 (2006). [CrossRef]
  20. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006). [CrossRef]
  21. A. Cho, "Voilà ! Cloak of Invisibility Unveiled," Science 314, 403 (2006). [CrossRef] [PubMed]
  22. D. R.  Smith, S.  Schultz, P.  Markos and C. M.  Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B  65, 195104 (2002). [CrossRef]
  23. O. Acher, A. -L. Adenot, and F. Duverger, "Fresnel coefficients at an interface with a lamellar composite material," Phys. Rev. B 62, 13748 (2000). [CrossRef]
  24. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  25. A. N. Lagarkov, A. K. Sarychev, Y. R. Smychkovich and A. P. Vinogradov, "Effective Medium Theory for microwave dielectric constant and magnetic permeability of conducting stick composites," J. Electromagn. Waves Appl. 6, 1159 (1992).
  26. O. Acher, A. -L. Adenot, F. Lubrano, and F. Duverger, "Low density artificial magnetic composites," J. Appl. Phys.,  85, 4639-4641 (1999). [CrossRef]
  27. O. Reynet, A. -L. Adenot, S. Deprot, O. Acher, and M. Latrach, "Effect of the magnetic properties of inclusions on the high-frequency dielectric response of diluted composites," Phys. Rev. B 66, 94412 (2002). [CrossRef]
  28. M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrinov and Y. S. Kivshar, "Effect of microscopic disorder on magnetic properties of metamaterials," Phys. Rev. E 73, 056605 (2006). [CrossRef]
  29. O. Acher, M. Ledieu, A.-L. Adenot and O. Reynet, "Microwave properties of diluted composites made of magnetic wires with giant magneto-impedance effect," IEEE Trans. Magn.,  39, 3085-3090 (2003). [CrossRef]
  30. D. Maystre and S. Enoch, "Perfect lenses made with left-handed materilas: Alice’s mirror," J. Opt. Soc. Am. A 21, 122-131 (2004). [CrossRef]
  31. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre and B Gralak, "Photonic Crystla Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (812 KB)     
» Media 2: AVI (1556 KB)     
» Media 3: AVI (2306 KB)     
» Media 4: AVI (1888 KB)     
» Media 5: AVI (754 KB)     
» Media 6: AVI (2107 KB)     
» Media 7: AVI (2481 KB)     
» Media 8: AVI (2381 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited