OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1240–1253

Graded index photonic crystals

Hamza Kurt and David S. Citrin  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 1240-1253 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore two-dimensional triangular lattice photonic crystals composed of air holes in a dielectric background which are subject to a graded-index distribution along the direction transverse to the propagation. The proper choice of the parameters such as the input beam width, gradient coefficient, and the operating frequency allow the realizations of the focusing (lens) and guiding (waveguide) effects upon which more complex optical devices such as couplers can be designed. Numerical results obtained by the finite-difference time-domain and planewave expansion methods validate the application of Gaussian optics within a range of parameters where close agreement between them are observed.

© 2007 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystals

Original Manuscript: December 15, 2006
Revised Manuscript: January 23, 2007
Manuscript Accepted: January 26, 2007
Published: February 5, 2007

Hamza Kurt and David S. Citrin, "Graded index photonic crystals," Opt. Express 15, 1240-1253 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannoupoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997). [CrossRef]
  2. H. Benisty, J. M. Lourtioz, A. Chelnokov, S. Combrie, X. Checoury, "Recent advances toward optical devices in semiconductor-based photonic crystals," Proceedings of the IEEE 94, 997-1023 (2006). [CrossRef]
  3. B. S. Song, S. Noda, and T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300, 1537 (2003). [CrossRef] [PubMed]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional Photonic band-gap defect mode Laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  5. B. Saleh and M. Teich, Fundamentals of photonics (New York, Wiley, 1991). [CrossRef]
  6. M. R. Mackenzie and C. Y. Kwok, "Theoretical analysis of integrated collimating waveguide lens," J. Lightwave Technol. 21, 1046-1052 (2003). [CrossRef]
  7. M. Zickar, W. Noell, C. Marxer, and N. de Rooij, "MEMS compatible micro-GRIN lenses for fiber to chip coupling of light," Opt. Express 14, 4237-4249 (2006). [CrossRef] [PubMed]
  8. A. Mekis, J. C. Chen, I. Kurand, S. Fan, P. R. Villeneuve, and J. D. Joannopolous, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  9. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411 (2000). [CrossRef]
  10. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  11. M. Bayindir, B. Temelkuran, and E. Ozbay, "Tight-binding description of the coupled defect modes in three-dimensional photonic crystals," Phys. Rev. Lett. 84, 2140-2143 (2000). [CrossRef] [PubMed]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  13. X. Yu and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003). [CrossRef]
  14. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, "Dispersion-based optical routing in photonic crystals," Opt. Lett. 29, 50-52 (2004). [CrossRef] [PubMed]
  15. E. Centeno and D. Cassagne, "Graded photonic crystals," Opt. Lett. 74, 2278-2280 (2005). [CrossRef]
  16. E. Centeno, D. Cassagne, and J. P. Albert, "Mirage and superbending effect in two-dimensional graded photonic crystals," Phys. Rev. B 73, 235119-235119 (2006). [CrossRef]
  17. P. Halevi, A. A. Krokhin, and J. Arriaga, "Photonic crystals as optical components," Appl. Phys. Lett. 75, 2725-2727 (1999). [CrossRef]
  18. E. Foca, H. Föll, J. Carstensen, V. V. Sergentu, I. M. Tiginyanu, F. Daschner, and R. Knöchel, "Strongly frequency dependent focusing efficiency of a concave lens based on two-dimensional photonic crystals," Appl. Phys. Lett. 88, 011102 (1-3) (2006). [CrossRef]
  19. D. Mori and T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystals waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004). [CrossRef]
  20. F. S. Roux and I. De Leon, "Planar photonic crystal gradient index lens, simulated with a finite difference time domain method," Phys. Rev. B 74, 113103 (1-4) (2006). [CrossRef]
  21. A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).
  22. S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Opt. Express, vol.  11, 167-175 (2003). [CrossRef]
  23. T. Tamir, Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1990). [CrossRef]
  24. J. T. Verdeyen, Laser Electronics (Prentice Hall, New Jersey, 1995).
  25. H. Kogelnik, "On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation," Appl. Opt. 4, 1562-1569 (1965). [CrossRef]
  26. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP  2, 466-475 (1956).
  27. P. Lalanne, "Effective medium theory applied to photonic crystals composed of cubic or square cylinders," Appl. Opt. 27, 5369-5380 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited