OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1267–1276

Nanowire coupling to photonic crystal nanocavities for single photon sources

Christian Grillet, Christelle Monat, Cameron L. C. Smith, Benjamin J. Eggleton, David J. Moss, Simon Frédérick, Dan Dalacu, Philip J. Poole, Jean Lapointe, Geof Aers, and Robin L. Williams  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 1267-1276 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate highly efficient evanescent coupling via a silica loop-nanowire, to ultra-small (0.5 (λ/n)3), InAs/InP quantum dot photonic crystal cavities, specifically designed for single photon source applications. This coupling technique enables the tuning of both the Q-factor and the wavelength of the cavity mode independently, which is highly relevant for single photon source applications. First, this allows for the optimization of the extraction efficiency while maintaining a high Purcell factor. Second, the cavity mode can be matched with a spectrally misaligned quantum dot without changing the structure or degrading the Q-factor: a 3 nm resonance shift is reported.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(230.6080) Optical devices : Sources

ToC Category:
Photonic Crystals

Original Manuscript: November 21, 2006
Revised Manuscript: January 18, 2007
Manuscript Accepted: January 18, 2007
Published: February 5, 2007

Christian Grillet, Christelle Monat, Cameron L. Smith, Benjamin J. Eggleton, David J. Moss, Simon Frédérick, Dan Dalacu, Philip J. Poole, Jean Lapointe, Geof Aers, and Robin L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, "Triggered Single Photons from a Quantum Dot," Phys. Rev. Lett. 86, 1502-1505 (2001). [CrossRef] [PubMed]
  2. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, and L. Samuelson, and G. Bjork, "Single quantum dots emit single photons at a time: Antibunching experiments," Appl. Phys. Lett. 78, 2476-2478 (2001). [CrossRef]
  3. M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson and D. A. Ritchie, "On-demand single-photon source for 1.3 µm telecom fiber," Appl. Phys. Lett. 86, 201111 (2005). [CrossRef]
  4. C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, "Time-resolved and anti-bunching experiments on single quantum dots at 1300nm," Appl. Phys. Lett. 88, 131102 (2006). [CrossRef]
  5. K. J. Vahala "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  6. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  7. A. Imamoglu, "Are quatum dots useful for quantum computation?," Physica E 16, 47-50 (2003). [CrossRef]
  8. J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, "Generation and manipulation of nonclassical light using photonic crystals," Physica E 32, 466-470 (2006). [CrossRef]
  9. J. M. Gerard and B. Gayral, "Toward high-efficiency quantum-dot single photon sources," in Quantum Dots, Nanoparticles, and Nanoclusters, D. L. Huffaker and P. Bhattacharya, eds, Proc. SPIE 5361, 88-95 (2004). [CrossRef]
  10. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  11. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  12. G. S. Solomon, M. Pelton, and Y. Yamamoto, "Single-mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity," Phys. Rev. Lett. 86, 3903-3906 (2001). [CrossRef] [PubMed]
  13. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  14. D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005). [CrossRef]
  15. D. Chitrani, R. L. Williams, J. Lefebvre, P. J. Poole, and G. C. Aers, "Optical spectroscopy of single, site-selected, InAs/InP self-assembled quantum dots," Appl. Phys. Lett. 84, 978-980 (2004). [CrossRef]
  16. W.L. Barnes, G. Bjork, J.M. Gerard, P. Jonsson, J.A.E. Wasey, P.T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002). [CrossRef]
  17. E. Moreau, I. Robert, J. M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79. 2865-2967 (2001). [CrossRef]
  18. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  19. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  20. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004). [CrossRef]
  21. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mat. 4, 207-210 (2005). [CrossRef]
  22. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  23. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997). [CrossRef] [PubMed]
  24. M. Cai, O. Painter, and K. J. Vahala, "Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system," Phys. Rev. Lett. 85, 74-77 (2000). [CrossRef] [PubMed]
  25. I. Hwang, S. K. Kim, J. Yang, S. H Kim, S. Lee, and Y. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005). [CrossRef]
  26. J. Vuckovic, and Y. Yamamoto, "Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot," Appl. Phys. Lett. 82, 2374-2376 (2003). [CrossRef]
  27. D. Dalacu, S. Frédérick, A. Bogdanov, P. J. Poole, G. C. Aers, and R. L. Williams, "Fabrication and optical characterization of hexagonal photonic crystal microcavities in InP-based membranes containing InAs/InP quantum dots," J. Appl. Phys. 98, 023101 (2005). [CrossRef]
  28. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin & D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  29. K. Hennessy, C. Högerle, E. Hu, A. Badolato and A. Imamoğlu, "Tuning photonic nanocavities by atomic force microscope nano-oxidation," Appl. Phys. Lett. 89, 041118 (2006). [CrossRef]
  30. D. Englund, J. Vuckovic, "A direct analysis of photonic nanostructures," Opt. Express 14, 3472-3483 (2006). [CrossRef] [PubMed]
  31. S. Frédérick, D. Dalacu, J. Lapointe, P.J. Poole, G.C. Aers and R.L. Williams, "Experimental demonstration of high quality factor, x-dipole modes in InAs/InP quantum dot photonic crystal microcavity membranes," Appl. Phys. Lett. 89, 091115 (2006). [CrossRef]
  32. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]
  33. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  34. I.  Marki, M.  Salt, and H. P.  Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express  14, 2969-2978 (2006). [CrossRef] [PubMed]
  35. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594-597 (2002). [CrossRef] [PubMed]
  36. H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004). [CrossRef]
  37. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited