OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1361–1368

Highly achromatic Fourier-transform spectrometer

David G. Winters, Philip Schlup, and Randy A. Bartels  »View Author Affiliations


Optics Express, Vol. 15, Issue 3, pp. 1361-1368 (2007)
http://dx.doi.org/10.1364/OE.15.001361


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simplified all-reflective Fourier transform spectrometer with a split-mirror configuration for use over a broad spectral range with spatially coherent sources. The device is particularly well suited for measurement of broadband laser-like light, with resolution limited by beam size and collimation. Spectra are taken in the near-UV and the mid-IR, a total span of 4.6 octaves, including an octave spanning spectrum. Potential sources of error are investigated both theoretically and experimentally.

© 2007 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: December 7, 2006
Revised Manuscript: January 17, 2007
Manuscript Accepted: January 19, 2007
Published: February 5, 2007

Citation
David G. Winters, Philip Schlup, and Randy A. Bartels, "Highly achromatic Fourier-transform spectrometer," Opt. Express 15, 1361-1368 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Michelson, "On the application of interference methods to Spectroscopic Measurements - II," Philos. Mag. 34, 280-299 (1892).
  2. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, 1972).
  3. M. L. Junttila, J. Kauppinen, and E. Ikonen, "Performance limits of Stationary Fourier Spectrometers," J. Opt. Soc. Am. A. 8, 1457-1462 (1991). [CrossRef]
  4. T. H. Barnes, "Photodiode array Fourier-transform Spectrometer with improved dynamic range," Appl. Opt. 24, 3702-3706 (1985). [CrossRef] [PubMed]
  5. T. Okamoto, S. Kawata, and S. Minami, "Fourier-transform Spectrometer with a self-scanning Photodiode array," Appl. Opt. 23, 269-273 (1984). [CrossRef] [PubMed]
  6. M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, "Single-pulse, Fourier-transform Spectrometer having no moving parts," Appl. Opt. 33, 6035-6040 (1994). [CrossRef] [PubMed]
  7. M. J. Padgett and A. R. Harvey, "A static Fourier-Transform Spectrometer based on Wollaston Prisms," Rev. Sci. Instrum. 66, 2807-2811 (1995). [CrossRef]
  8. G. Zhan, K. Oka, T. Ishigaki, and N. Baba, "Birefringent imaging spectrometer," Appl. Opt. 41, 734-738 (2002). [CrossRef] [PubMed]
  9. Y. Q. Lu, F. Du, Y. H. Wu, and S. T. Wu, "Liquid-crystal-based Fourier optical spectrum analyzer without moving parts," Jpn. J. Appl. Phys. 44, 291-293 (2005). [CrossRef]
  10. J. W. Brault, "Fourier-Transform Spectrometry in relation to other passive Spectrometers," Philos. Trans. R. Soc. London, Ser. A. 307, 503-511 (1982). [CrossRef]
  11. A. P. Thorne, C. J. Harris, I. Wynnejones, R. C. M. Learner, and G. Cox, "A Fourier-Transform Spectrometer for the Vacuum ultraviolet - design and performance," J. Phys. E:J. Sci. Instrum. 20, 54-60 (1987). [CrossRef]
  12. R. A. Bartels, A. Paul, M. M. Murnane, H. C. Kapteyn, S. Backus, Y. Liu, and D. T. Attwood, "Absolute determination of the wavelength and spectrum of an extreme-ultraviolet beam by a Young’s double-slit measurement," Opt. Lett. 27, 707-709 (2002). [CrossRef]
  13. R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y.W. Liu, D. Attwood, and C. Jacobsen, "Generation of spatially coherent light at extreme ultraviolet wavelengths," Science 297, 376-378 (2002). [PubMed]
  14. M. L. Junttila, "Stationary Fourier-Transform Spectrometer," Appl. Opt. 31, 4106-4112 (1992). [CrossRef] [PubMed]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  16. C. Shannon, "Communication in the presence of noise," Proc. IEEE 72, 1192-1201 (1984). [CrossRef]
  17. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163 LP - 182 (1944). [CrossRef]
  18. SNLO Nonlinear Optics code available from A. V. Smith, Sandia National Laboratories, Albuquerque, NM 87185-1423.
  19. T. Harimoto, Y. Takeuchi, and M. Fujita, "Curve-fitting method for pure spectrum measurement of femtosecond laser pulses by a pinhole pair," Opt. Express 13, 5689-5693 (2005). [CrossRef] [PubMed]
  20. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  21. P. Agostini and L. F. DiMauro, "The physics of attosecond light pulses," Rep. Prog. Phys. 67, 813-855 (2004). [CrossRef]
  22. D. M. Gaudiosi, B. Reagan, T. Popmintchev, M. Grisham, M. Berrill, O. Cohen, B. C. Walker, M. M. Murnane, H. C. Kapteyn, and J. J. Rocca, "High-order harmonic generation from ions in a capillary discharge," Phys. Rev. Lett. 96 203001 (2006). [CrossRef] [PubMed]
  23. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 mu m," J. Opt. Soc. Am. B 17, 2086-2094 (2000). [CrossRef]
  24. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  25. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005). [CrossRef] [PubMed]
  26. A. Baltuska and T. Kobayashi, "Parametric amplification and phase control of few-cycle light pulses," in Few-Cycle Laser Pulse Generation and its Applications, Top. Appl. Phys. 95, 179-227 (2004).
  27. T. Kobayashi and A. Baltuska, "Sub-5 fs pulse generation from a noncollinear optical parametric amplifier," Meas. Sci. Technol. 13, 1671-1682 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited