OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1369–1375

A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes

Min Gu, Smitha Kuriakose, and Xiaosong Gan  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 1369-1375 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To understand the fundamental mechanical and viscoelastic properties of RBCs, one needs laser tweezers in which cells can not only be trapped, but also be stretched, folded, and rotated. Stretching, folding and rotating an RBC is particularly important in order to reveal the shear elasticity of the RBC membrane. Here we show a single beam near-field laser trapping technique under focused evanescent wave illumination for optical stretching, folding and rotation of a single RBC. This multi-functional manipulation method will provide a new platform for measuring cell properties such as the membrane elasticity, viscoelasticity and deformability.

© 2007 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(260.6970) Physical optics : Total internal reflection

ToC Category:

Original Manuscript: January 3, 2007
Manuscript Accepted: January 22, 2007
Published: February 5, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Min Gu, Smitha Kuriakose, and Xiaosong Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic,and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature 330, 769 (1987). [CrossRef] [PubMed]
  3. A. Krantz, "Red-cell mediated therapy: opportunities and challenges," Blood Cells, Molecules and Diseases 23, 58 (1997). [CrossRef]
  4. A. Elgsaeter, B. T. Stokke, A. Mikkelsen, and D. Branton, "The molecular basis of erythrocyte shape," Science 234, 1217 (1986). [CrossRef] [PubMed]
  5. G. Bao, and S. Suresh, "Cell and molecular mechanics of biological materials," Nature Materials 2, 715 (2003). [CrossRef] [PubMed]
  6. S. Sato, M. Ishigure, and H. Inaba, "Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser beams," Electron. Lett. 27, 1831 (1991). [CrossRef]
  7. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Naturally occurring, optically driven, cellular rotor," Appl. Phys. Lett. 85, 6048 (2004). [CrossRef]
  8. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, "Torque-generating malaria infected red blood cells in an optical trap," Opt. Express 12, 1179 (2004). [CrossRef] [PubMed]
  9. A Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma and D. Mathur, "Euler buckling-induced folding and rotation of red blood cells in an optical trap," Phys. Biol. 3,67 (2006). [CrossRef] [PubMed]
  10. S. C. Grover, R. C. Gauthier, and A. G. Skirtach, "Analysis of the behaviour of erythrocytes in an optical trapping system," Opt. Express 7, 533 (2005). [CrossRef]
  11. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, "A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers," Biophys. J. 76, 1145 (1999). [CrossRef] [PubMed]
  12. M. Dao, C. T. Lim, and S. Suresh, "Mechanics of the human red blood cell deformed by optical tweezers," J. Mech. Phys. Solids 51, 2259 (2003). [CrossRef]
  13. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451 (2000). [CrossRef] [PubMed]
  14. S. K. Mohanty, K. S. Mohanty and P. K. Gupta, "Dynamics of Interaction of RBC with optical tweezers," Opt. Express 13, 4745 (2005). [CrossRef] [PubMed]
  15. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, "Two-photon fluorescence scanning near-field microscopy based on a focused evanescent field under total internal reflection," Opt. Lett.,  28, 1930 (2003). [CrossRef] [PubMed]
  16. B. Jia, X. Gan, and M. Gu, "Direct observation of pure focused evanescent wave of a high numerical-aperture objective lens by scanning near-field optical microscopy," Appl. Phys. Lett. 86,131110 (2005). [CrossRef]
  17. V. Garcés-Chávez, and K. Dholakia, "Extended-area optically induced organization of microparticles on a surface," Appl. Phys. Lett. 86, 031106 (2005). [CrossRef]
  18. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004). [CrossRef]
  19. D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533 (2004). [CrossRef] [PubMed]
  20. S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: a ray-optics model," J. Appl. Phys. 97, 083103 (2005). [CrossRef]
  21. J. Yu, J. Chen, Z. Lin, L. Xu, Wang, P.  and Gu, M , "Surface stress on the erythrocyte under laser irradiation with finite-difference time-domain calculation," J. Biomedical Opt. 10, 064013 (2005). [CrossRef]
  22. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14 (1973). [CrossRef]
  23. C. D. Eggleton, and A. Popel, "Large deformation of red blood cells ghosts in a simple shear flow," Phys. Fluids. 10, 1834 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

Supplementary Material

» Media 1: AVI (1974 KB)     
» Media 2: AVI (3925 KB)     
» Media 3: AVI (3204 KB)     
» Media 4: AVI (5964 KB)     
» Media 5: AVI (2041 KB)     
» Media 6: AVI (5749 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited