OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 878–886

Improved tomographic imaging of wavelength scanning digital holographic microscopy by use of digital spectral shaping

Lingfeng Yu and Zhongping Chen  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 878-886 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The technique of wavelength scanning digital holographic microscopy (WSDHM) is improved by use of a digital spectral shaping method which is used to suppress the sidelobes of the amplitude modulation function in WSDHM for non-Gaussian-shaped source spectra. Spurious structures caused by sidelobes can be eliminated in tomographic imaging and the performance of the tomographic system greatly improved. Detailed theoretical analysis is given. Both simulation and experimental results are presented to verify the idea.

© 2007 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(110.0180) Imaging systems : Microscopy
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:

Original Manuscript: December 4, 2006
Revised Manuscript: January 11, 2007
Manuscript Accepted: January 11, 2007
Published: February 5, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Lingfeng Yu and Zhongping Chen, "Improved tomographic imaging of wavelength scanning digital holographic microscopy by use of digital spectral shaping," Opt. Express 15, 878-886 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars and W. Juptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85-101 (2002). [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-3 (1999). [CrossRef]
  3. G. Indebetouw, "Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning," J. Mod. Opt.,  49, 1479-1500 (2002). [CrossRef]
  4. E. Wolf, "Three-dimensional structure determination of semitransparent object from holographic data," Opt. Commun. 1, 153-156 (1969). [CrossRef]
  5. W. H. Carter, "Computational reconstruction of scattering objects from holograms," J. Opt. Soc. Am. 60, 306-314 (1970). [CrossRef]
  6. R. Dändliker and D. Weiss, "Reconstruction of three dimensional refractive index from scattered waves," Opt. Commun. 1, 323-328 (1970). [CrossRef]
  7. A. F. Fercher, H. Bartelt, H. Becker, and E. Wiltschko, "Image formation by inversion of scattered field data: experiments and computational simulation," Appl. Opt. 18, 2427-2439 (1979). [CrossRef] [PubMed]
  8. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006) [CrossRef] [PubMed]
  9. M. K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000). [CrossRef] [PubMed]
  10. M. K. Kim, L. Yu, and C. J. Mann, "Interference techniques in digital holography," J. Opt. A, Pure Appl. Opt. 8, S518-S523 (2006). [CrossRef]
  11. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005) [CrossRef] [PubMed]
  12. L. Yu and M. K. Kim, "Wavelength scanning digital interference holography for variable tomographic scanning," Opt. Express. 13, 5621-5627 (2005). [CrossRef] [PubMed]
  13. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006) [CrossRef] [PubMed]
  14. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman,W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  15. W. Drexler, U. Morgner, F. X. Krtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "Invivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999) [CrossRef]
  16. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber, " Opt. Lett. 26, 608-610 (2001) [CrossRef]
  17. Y. Zhang, M. Sato, and N. Tanno, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes, " Opt. Lett. 26, 205-207 (2001) [CrossRef]
  18. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002) [CrossRef]
  19. A F Fercher, W Drexler, C K Hitzenberger and T Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003) [CrossRef]
  20. M. Alonso, and G. W. Forbes, "Measures of spread for periodic distributions and the associated uncertainty relations," Am. J. Phys. 69, 340-347 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited