OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 985–991

Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation

Yury Logvin, V. P. Kalosha, and Hanan Anis  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 985-991 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (119 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Novel features in stretched-pulse and similariton mode-locked regimes of Yb-doped fiber laser with photonic bandgap fiber used for dispersion compensation are found by means of numerical simulations. We show that the mode-locked pulse may become shorter with increasing third-order dispersion. Analytical estimations explain observed behavior through resonant interaction of the main pulse with dispersive waves involving both resonant sidebands and zero-group-velocity dispersion waves. Switching between the stretched-pulse and the similariton regimes is also studied.

© 2007 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 13, 2006
Revised Manuscript: January 29, 2007
Manuscript Accepted: January 29, 2007
Published: February 5, 2007

Yury Logvin, V. P. Kalosha, and Hanan Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985-991 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233 - 244 (2006). [CrossRef]
  2. H. Lim and F. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004). [CrossRef] [PubMed]
  3. A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006). [CrossRef] [PubMed]
  4. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1 µm using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006). [CrossRef] [PubMed]
  5. R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, 19-20 (2006). [CrossRef]
  6. H. A. Haus, J. D. Moores, and L. E. Nelson, "Effect of third-order dispersion on passive mode locking," Opt. Lett. 18, 51-53 (1993). [CrossRef] [PubMed]
  7. M. L. Dennis and I. N. Duling, III, "Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994). [CrossRef]
  8. M. L. Dennis and I. N. Duling, III, "Third-order dispersion in femtosecond fiber lasers," Opt.Lett. 19, 1750-1752 (1994). [CrossRef] [PubMed]
  9. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt.Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  10. F. Ö. Ilday, J. R. Buckley, W. G. Clark and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004). [CrossRef]
  11. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. Cho, and M. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005). [CrossRef] [PubMed]
  12. S. Zhou, L. Kuznetsova, A. Chong, and F. Wise, "Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers," Opt. Express 13, 4869-4877 (2005). [CrossRef] [PubMed]
  13. V. P. Kalosha, L. Chen, and X. Bao, "Ultra-short pulse operation of all-optical fiber passively mode-locked ytterbium laser," Opt. Express 14, 4935-4945 (2006). [CrossRef] [PubMed]
  14. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, "Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers," Opt. Express 12, 835-840 (2004). [CrossRef] [PubMed]
  15. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992). [CrossRef]
  16. A. Weiner, "Femtosecond pulse shaping using spatial light modulators", Rev. Sci. Instr. 71, 1929-1960 (2000). [CrossRef]
  17. J. R. Buckley, S. W. Clark, and F. W. Wise, "Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase compensation," Opt. Lett. 31, 1340-1342 (2006). [CrossRef] [PubMed]
  18. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Opt. Express 11, 3550-3554 (2003) [CrossRef] [PubMed]
  19. T. Brabec and S. M. J. Kelly, "Third-order dispersion as a limiting factor to mode locking in femtosecond solitary lasers," Opt. Lett. 18, 2002-2004 (1993). [CrossRef] [PubMed]
  20. J. Herrmann, V. P. Kalosha, and M. Muller, "Higher-order phase dispersion in femtosecond Kerr-lens mode-locked solid-state lasers: sideband generation and pulse splitting," Opt. Lett. 22, 236-238 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited