OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1390–1407

High accuracy verification of a correlated-photon-based method for determining photon-counting detection efficiency

Sergey V. Polyakov and Alan L. Migdall  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1390-1407 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have characterized an independent primary standard method to calibrate detection efficiency of photon-counting detectors based on two-photon correlations. We have verified this method and its uncertainty by comparing it to a substitution method using a conventionally calibrated transfer detector tied to a national primary standard detector scale. We obtained a relative standard uncertainty for the correlated-photon method of 0.18 % (k=1) and for the substitution method of 0.17 % (k=1). From a series of measurements we found that the two independent calibration techniques differ by 0.14(14) %, which is within the established uncertainty of comparison. We believe this is the highest accuracy characterization and independent verification of the correlated-photon method yet achieved.

© 2007 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(120.3940) Instrumentation, measurement, and metrology : Metrology
(270.5290) Quantum optics : Photon statistics

ToC Category:

Original Manuscript: November 22, 2006
Revised Manuscript: January 26, 2007
Manuscript Accepted: January 26, 2007
Published: February 19, 2007

Sergey V. Polyakov and Alan L. Migdall, "High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency," Opt. Express 15, 1390-1407 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Louisell, A. Yariv, and A. E. Siegman, "Quantum Fluctuations and Noise in Parametric Processes," Phys. Rev. 124, 1646-1654 (1961). [CrossRef]
  2. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics, (New York: Wiley, 1973).
  3. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970). [CrossRef]
  4. D. N. Klyshko, "Correlation of Stokes and Anti-Stokes Components under Inelastic Light-Scattering," Sov. J. Quantum Electron. 7, 591-594 (1977). [CrossRef]
  5. D. N. Klyshko, "On the Use of a 2-Photon Light for Absolute Calibration of Photoelectric Detectors," Sov. J. Quantum Electron. 10, 1112-1116 (1981). [CrossRef]
  6. A. A. Malygin, A. N. Penin, and A. V. Sergienko, "An Efficient Emission of a Two-Photon Fields in the Visible Region," Sov. J. Quantum Electron. 11, 939-941 (1981). [CrossRef]
  7. S. R. Bowman, Y. H. Shih, and C. O. Alley, "The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels: An experimental evaluation," in Laser Radar Technology and Applications I, James M. Cruickshank, Robert C. Harney eds., Proc. SPIE 663, 24-29 (1986).
  8. J. G. Rarity, K. D. Ridley, and P. R. Tapster, "Absolute Measurement of Detector Quantum Efficiency Using Parametric Downconversion," Appl. Opt. 26, 4616-4619 (1987). [CrossRef] [PubMed]
  9. A. N. Penin and A. V. Sergienko, "Absolute Standardless Calibration of Photodetectors Bbased on Quantum Two-pPhoton Fields," Appl. Opt. 30, 3582-3588, (1991). [CrossRef] [PubMed]
  10. V. M. Ginzburg, N. Keratishvili, E. L. Korzhenevich, G. V. Lunev, A. N. Penin, and V. Sapritsky, "Absolute Meter of Photodetector Quantum Efficiency Based on the Parametric Down-Conversion Effect," Opt. Eng. 32, 2911-2916 (1993). [CrossRef]
  11. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, "Absolute Efficiency and Time-Response Measurement of Single-Photon Detectors," Appl. Opt. 33, 1844-1853 (1994). [CrossRef] [PubMed]
  12. A. Migdall, R. Datla, A. Sergienko, J. S. Orszak, and Y. H. Shih, "Measuring Absolute Infrared Spectral Radiance with Correlated Visible Photons: Technique Verification and Measurement Uncertainty," Metrologia 32, 479-483 (1995/6). [CrossRef]
  13. G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, and M. L. Rastello, "Quantum Efficiency and Dead Time of Single-Photon Counting Photodiodes: a Ccomparison Between Two Measurement Techniques," Metrologia 37, 625-628 (2000). [CrossRef]
  14. G. Brida, S. Castelletto, I. P. Degiovanni, M. Genovese, C. Novero, and M. L. Rastello, "Towards an Uncertainty Budget in Quantum-Efficiency Measurements with Parametric Fluorescence," Metrologia 37, 629-632 (2000). [CrossRef]
  15. T. J. Quinn, "Meeting of Directors of National Metrology Institutes held in Sevres on 17 and 18 February 1997," Metrologia 34, 61-65 (1997). [CrossRef]
  16. A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, I. P. Degiovanni, S. Castelletto and M. L. Rastello, "Radiometric reference for weak radiations: comparison of methods," Metrologia,  42, 271-277 (2005);A. Ghazi-Bellouati, A. Razet, J. Bastie, M. E. Himbert, "Detector calibration at INM using a correlated photons source," Eur. Phys. J. Appl. Phys. 35, 211-216 (2006). [CrossRef]
  17. J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, C. J. Williams, E. W. Hagley and Jesse Wen, "Quantum Key Distribution with 1.25 Gbps Clock Synchronization," Opt. Express 12, 2011-2016 (2004). [CrossRef] [PubMed]
  18. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, H. J. Kimble, "Measurement-induced entanglement for excitation stored in remote atomic ensembles," Nature 438, 828-832 (2005). [CrossRef] [PubMed]
  19. M. Ware and A. L. Migdall, "Single-photon Detector Characterization Using Correlated Photons: the March from Feasibility to Metrology," J. Mod. Opt. 15, 1549- 1557 (2004).
  20. A. L. Migdall, "Absolute Quantum Efficiency Measurements Using Correlated Photons: Toward a Measurement Protocol," in Proceedings of IEEE Conference: Transactions on Instrumentation and Measurement, 50, (IEEE, 2001) 478-481.
  21. Determination of the Spectrum Responsivity of Optical Radiation Detectors, Publ. 64 (Commission Internationale de L’Éclairage, Paris, 1984).
  22. Budde, W. , Optical Radiation Measurements, Vol. 4: Physical Detectors of Optical Radiation, (Academic Press, Inc., Orlando, FL, 1983).
  23. SPCM-AQR Single Photon Counting Module, product datasheet, available at: http://optoelectronics.perkinelmer.com/content/Datasheets/SPCM-AQR.pdf.
  24. Perkin-ElmerAPD  SPCM-AQR-12 (trigger detector: s/n 12432, DUT: s/n 12433)
  25. Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  26. Gamma Scientific Silicon Photodiode p/n: 19830-3 s/n: ND0104
  27. M. Ware, A. L. Migdall, J. C. Bienfang, and S. V. Polyakov, "Calibrating Photon-Counting Detectors to High Accuracy: Background and Deadtime Issues," J. Mod. Opt., to appear.
  28. S. V. Polyakov, M. Ware, and A. L. Migdall, "High-accuracy calibration of photon-counting detectors", in Advanced Photon Counting Techniques, W. Becker, ed., Proc. SPIE 6372 (2006).
  29. B. N. Taylor and C. E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition.
  30. T. C. Larason, S. S. Bruce, and A. C. Parr, Spectroradiometric Detector Measurements, Part 1-Ultraviolet Detectors, and Part 2-Ultraviolet and Visible to Near-Infrared Detectors, NIST Special Publication 250-41.
  31. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, "Facility for spectral irradiance and radiance responsivity calibrations using uniform sources," Appl. Opt. 45, 8218-8237 (2006) [CrossRef] [PubMed]
  32. M. M. Choy and R. L. Byer, "Accurate 2nd-order Susceptibility Measurements of Visible and Infrared Nonlinear Crystals," Phys. Rev. B 14, 1693-1706 (1976). [CrossRef]
  33. Establishing transmittance with desired accuracy requires temporal stability of associated irradiance measurements. The experimental setup consisted of a He-Ne laser followed by a spatial filter (pinhole), and two trap detectors with a high degree of spatial uniformity. One trap detector monitored the laser’s power and the other measured the transmitted power with and without the crystal. The maximum observed long-term drift of the system was 0.004%/h, and the rms of the signal, normalized to laser power, was 0.02%.
  34. J. Cheung, J. Gardner, A. L. Migdall, S. V. Polyakov, and M. Ware, "High accuracy lens transmittance measurements," submitted to Appl. Opt.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited