OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1415–1427

Polarization independent enhanced optical transmission in one-dimensional gratings and device applications

David Crouse and Pavan Keshavareddy  »View Author Affiliations


Optics Express, Vol. 15, Issue 4, pp. 1415-1427 (2007)
http://dx.doi.org/10.1364/OE.15.001415


View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A review and analysis is performed of various resonance effects associated with subwavelength one-dimensional (1-D) metal gratings for transverse electric (TE) and transverse magnetic (TM) polarized incident radiation. It is shown that by tuning the structural geometry (especially the groove width) and material composition of the 1-D gratings, polarization independent enhanced optical transmission (EOT) can be achieved. Three different cases of EOT have been studied for 1-D metal gratings: a) EOT for TM-polarized incident radiation b) EOT for TE-polarized incident radiation, and most importantly c) EOT for un-polarized incident light. Potential uses of these results in the design and improvement of various optoelectronic devices, such as polarizers, photodetectors and wavelength filters are discussed.

© 2007 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 6, 2006
Revised Manuscript: November 7, 2006
Manuscript Accepted: November 7, 2006
Published: February 19, 2007

Citation
David Crouse and Pavan Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. Garcia-Vidal and L. Martin-Moreno, " Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B 66, 155412(1) -1554121(0) (2002) [CrossRef]
  2. E. Popov and L. Tsonev, "Electromagnetic field enhancement in deep metallic gratings," Opt. Commun. 69, 193-198 (1989). [CrossRef]
  3. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396-408 (1902).
  4. A. Hessel and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965). [CrossRef]
  5. U. Fano, "The theory of anomalous diffraction gratings and quasi-stationary waves on metallic surfaces," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  6. D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed. (John Wiley and Sons, Belfast, 1982), pp. 661-724.
  7. U. Schroeter, D. Heitmann " Surface plasmons enhanced transmission thorough metallic gratings," Phys. Rev. B 58, 15419-15421 (1998) [CrossRef]
  8. A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B 66, 161403(1)- 161403(4_ (2002). [CrossRef]
  9. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999) [CrossRef]
  10. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403(1) - 057403(4) (2002). [CrossRef]
  11. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105-195116 (2002) [CrossRef]
  12. A. G Borisov, F. J. Garcia de Abajo, S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408(1) - 075408(7) (2005). [CrossRef]
  13. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-7760 [CrossRef]
  14. D. Crouse, "Numerical Modeling and Electromagnetic Resonant Modes in Complex Grating Structures and Optoelectronic Device Applications," IEEE Trans. Electron Devices 52, 2365-2373 (2005). [CrossRef]
  15. D. Crouse, M. Arend, J. Zou, and P. Keshavareddy, "Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors," Opt. Express 14, 2047-2061 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2047 [CrossRef] [PubMed]
  16. D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electronics 49, 1697-1701 (2005). [CrossRef]
  17. D. Crouse and P. Keshavareddy, "Electromagnetic Resonance Enhanced Silicon-on-Insulator Metal-Semiconductor-Metal Photodetectors," J. Opt. A: Pure Appl. Opt. 8, 175-181 (2006). [CrossRef]
  18. Stephane Collin,Fabrice Pardo, and Jean-Luc Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003). [CrossRef]
  19. Stéphane Collin,Fabrice Pardo,Roland Teissier,and Jean-Luc Pelouard, " Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004). [CrossRef]
  20. Lochbihler, H.  and R. Depine, "Highly conducting wire gratings in the resonance region," Appl. Opt. 32, 3459-3465 (1993). [CrossRef] [PubMed]
  21. E. Popov, L. Tsonev, "Resonant electric field enhancement in vicinity of a bare metallic grating exposed to s-polarize light," Surf. Science. Lett. 271, L378-L382 (1992). [CrossRef]
  22. David R. Lide, Handbook of Chemistry and Physics (CRC Press, London, 1992-1993).
  23. H. Ichikawa, "Electromagnetic analysis of diffraction gratings by the finite-difference time-domain method," J. Opt. Soc. Amer. A 15, 152-157 (1998) [CrossRef]
  24. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous couple-wave analysis for surface relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995) [CrossRef]
  25. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, "Al wire -grid polarizer using the s-polarization resonance effect at the 0.8μm wavelength band," Opt. Lett. 22, 419-421 (1997). [CrossRef] [PubMed]
  26. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366-1371 (2005). [CrossRef] [PubMed]
  27. S. S. Wang, R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993) [CrossRef] [PubMed]
  28. G. Niederer, W. Nakagawa, H. P. Herzig, H. Thiele, "Design and characterization of a tunable polarization-independent resonant grating filter, " Opt. Express 13, 2196-2200 (2005). [CrossRef] [PubMed]
  29. G. Tayeb and R. Petit, "On the numerical study of deep conducting lamellar diffraction gratings," Optica Acta 31, 1361-1365 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited