OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1612–1620

Wavelength locking of CW and Q-switched Er3+ microchip lasers to acetylene absorption lines using pump-power modulation

Marc Brunel and Marc Vallet  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1612-1620 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that modulating the diode-pump power of a microchip solid-state laser enables to lock its wavelength to a reference molecular line. The method is applied to two different types of Er,Yb:glass monolithic microchip lasers operating at 1.53 μm. First, wavelength locking of a continuous-wave dual-polarization microchip laser to acetylene absorption lines is demonstrated, without using any additional modulator, internal or external. We then show that, remarkably, this simple method is also suitable for stabilizing a passively Q-switched microchip laser. A pulsed wavelength stability of 10-8 over 1 hour is readily observed. Applications to lidars and to microwave photonics are discussed.

© 2007 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 10, 2006
Revised Manuscript: December 21, 2006
Manuscript Accepted: December 21, 2006
Published: February 19, 2007

Marc Brunel and Marc Vallet, "Wavelength locking of CW and Q-switched Er3+ microchip lasers to acetylene absorption lines using pump-power modulation," Opt. Express 15, 1612-1620 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Demtröder, Laser spectroscopy, 3d ed. (Springer, Berlin, 2003).
  2. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, "Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine," Opt. Lett. 17, 1204-1206 (1992). [CrossRef] [PubMed]
  3. P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D: Appl. Phys. 34, 2396-2407 (2001). [CrossRef]
  4. P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. De Natale, "Frequency locking of tunable Er:Yb microlasers to absorption lines of 13C2H2 in the 1540-1550 nm wavelength interval," Appl. Phys. Lett. 71, 2731-2733 (1997). [CrossRef]
  5. G. J. Koch, M. Petros, J. Yu, and U. N. Singh, "Precise frequency control of a single-frequency pulsed Ho:Tm:YLF laser," Appl. Opt. 41, 1718-1721 (2002). [CrossRef] [PubMed]
  6. K. Ertel, H. Linné, and J. Bösenberg, "Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation," Appl. Opt. 44, 5120-5126 (2005). [CrossRef] [PubMed]
  7. J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999). [CrossRef]
  8. R. L. Byer, "Diode laser-pumped solid-state lasers," Science 239, 742-747 (1988). [CrossRef] [PubMed]
  9. J. A. Keszenheimer, E. J. Balboni, and J. J. Zayhowski, "Phase-locking of 1.32 μm microchip lasers through the use of pump-diode modulation," Opt. Lett. 17, 649-651 (1992). [CrossRef] [PubMed]
  10. P. Thony and E. Molva, "1.55 μm-wavelength cw microchip lasers," OSA TOPS on Advanced Solid-State Lasers Vol. 1, S. A. Payne and C. Pollock, Eds., (Optical Society of America, Washington DC, 1996), pp. 296-300.
  11. M. Heurs, V. M. Quetschke, B. Willke, K. Danzmann, and I. Freitag, "Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique," Opt. Lett. 29, 2148-2150 (2004). [CrossRef] [PubMed]
  12. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 μm," Opt. Lett. 30, 2418-2420 (2005). [CrossRef] [PubMed]
  13. L. Morvan, M. Alouini, J. Bourderionnet, J. Le Gouët, D. Dolfi, and J. P. Huignard, "Widely tunable two-frequency Nd:YAG laser," in CLEO/QELS and PhAST, Technical Digest (Optical Society of America, 2005), paper CF01.
  14. M. Abramowitz and I. E. Stegun, Handbook of mathematical functions, (Dover, New York, 1965).
  15. A. A. Madej, J. E. Bernard, A. J. Alcock, A. Czajkowski, and S. Chepurov, "Accurate absolute frequencies of the v1+v3 band of 13C2H2 determined using an infrared mode-locked Cr:YAG laser frequency comb," J. Opt. Soc. Am. B 23, 741-749 (2006). [CrossRef]
  16. V. Lupei, G. Aka, and D. Vivien, "Highly efficient 0.84 slope efficiency, 901 nm, quasi-two-level laser emission of Nd in strontium lanthanum aluminate," Opt. Lett. 31, 1064-1066 (2006). [CrossRef] [PubMed]
  17. N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, "Two-frequency Er-Yb:glass microchip laser passively Q-switched by a Co:ASL saturable absorber," Opt. Lett. 28, 328-330 (2003). [CrossRef] [PubMed]
  18. F. Imkenberg, J. Barenz, H. D. Tholl, A. Malinowski, K. Furusawa, and D. J. Richardson, "Microchip laser master-oscillator Er/Yb-doped fiber-power-amplifier emitting 158 μJ pulses with a duration of 4.5 ns," Proc. CLEO-Europe 2003, 317 (2003), paper CL5-6.
  19. A. Agnesi, F. Pirzio, G. Reali, and G. Piccinno, "Subnanosecond diode-pumped passively Q-switched Nd:GdVO4 laser with peak power > 1 MW," Appl. Phys. Lett. 89, 101120 (2006). [CrossRef]
  20. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable, and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005). [CrossRef] [PubMed]
  21. J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited