OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1755–1761

Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides

Sheng Hsiung Chang, Tsen Chieh Chiu, and Chao-Yi Tai  »View Author Affiliations


Optics Express, Vol. 15, Issue 4, pp. 1755-1761 (2007)
http://dx.doi.org/10.1364/OE.15.001755


View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the propagation characteristics of a plasmonic waveguide structure based on two coupled rectangular wedges. Dispersion, propagation loss, and field distributions are investigated by three-dimensional finite-difference time-domain method. The considered structure supports only one supermode over 30THz bandwidth, and the calculated propagation loss at λ=1.55μm is 0.0257dB/μm, which is lower than the existing report by 1.7 times while keeping comparable field localizations. The all-planar structure in conjunction with the linearly dispersive characteristic over a wide operational bandwidth signifies its great potential for optical signal transporting in nanophotonic circuits.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(200.4650) Optics in computing : Optical interconnects
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 24, 2006
Revised Manuscript: January 16, 2007
Manuscript Accepted: January 16, 2007
Published: February 19, 2007

Citation
Sheng Hsiung Chang, Tsen Chieh Chiu, and Chao-Yi Tai, "Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides," Opt. Express 15, 1755-1761 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1755


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Krenn, "Nanoparticle waveguide: watching energy transfer," Nat. Mater. 2, 210 (2003). [CrossRef] [PubMed]
  2. J. -C. Weeber,  et al., "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001). [CrossRef]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  5. S. A. Maier,  et al., "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  6. B. E. Sernelius, Surface modes in physics, 1st ed. (Wiley-VCH, Berlin, 2001).
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Non-diffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663 (2002). [CrossRef]
  8. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: Surface plasmons," Phys. Rev. B 10, 3038 (1974). [CrossRef]
  9. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the Optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590 (1999). [CrossRef]
  10. K. Tananka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides," Opt. Express 13, 256 (2005). [CrossRef]
  11. L. Chen, Ja. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133 (2006). [CrossRef] [PubMed]
  12. T. Yatsui, M. Kourogi, and M. Ohtsu, "Plasmon waveguide for optical far/near-field conversion," Appl. Phys. Lett. 79, 4583 (2001). [CrossRef]
  13. I. V. Novikov and A. A. Marardudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  14. D. F. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069 (2004). [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, J. -Y Laluet, and W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 23 (2006). [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  17. D. F. P. Pile and D. K. Gramotnev, "Plasmonic subwavelength waveguides: next to zero losses at sharp bends," Opt. Lett. 30, 1186 (2005). [CrossRef] [PubMed]
  18. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004). [CrossRef] [PubMed]
  19. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single-mode Rib Waveguides in Ge/Si-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971 (1991). [CrossRef]
  20. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, "Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap," J. Appl. Phys. 100, 013101 (2006). [CrossRef]
  21. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006). [CrossRef] [PubMed]
  22. K. S. Yee, "Numerical solution of initial boundary value problem involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302 (1966). [CrossRef]
  23. R. Luebbers, F. P. Hunsberger, K. Kunz, R. Standler, and M. Schneider, "A frequency-dependent finite difference time domain formulation for dispersive materials," IEEE Trans. Electromag. Compat. 32, 222 (1990). [CrossRef]
  24. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr. L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, W," Appl. Opt. 24, 4493 (1985). [CrossRef] [PubMed]
  25. G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48, 637 (2000). [CrossRef]
  26. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 73241 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited