OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1773–1782

Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds

Robin Giller, Robert J. Manning, Giuseppe Talli, Roderick P. Webb, and Michael J. Adams  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1773-1782 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the dependence of the speed of recovery of optically excited semiconductor optical amplifiers (SOAs) on the active region dimensions. We use a picosecond pump-probe arrangement to experimentally measure and compare the gain and phase dynamics of four SOAs with varying active region dimensions. A sophisticated time domain SOA model incorporating amplified spontaneous emission (ASE) agrees well with the measurements and shows that, in the absence of a continuous wave (CW) beam, the ASE plays a similar role to such a holding beam. The experimental results are shown to be consistent with a recovery rate which is inversely proportional to the optical area. A significant speed increase is predicted for an appropriate choice of active region dimensions.

© 2007 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:

Original Manuscript: November 27, 2006
Revised Manuscript: December 20, 2006
Manuscript Accepted: December 21, 2006
Published: February 19, 2007

Robin Giller, Robert J. Manning, Giuseppe Talli, Roderick P. Webb, and Michael J. Adams, "Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds," Opt. Express 15, 1773-1782 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, "Nonlinear optics for high-speed digital information processing," Science 286, 1523-1528 (1999). [CrossRef] [PubMed]
  2. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, and C. A. Burrus, "100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," IEEE Electron. Lett. 36, 1129-1130 (2000).
  3. R. J. Manning, X. Yang, R. P. Webb, and R. Giller, "The ‘turbo-switch’ - a novel technique to increase the high-speed response of SOAs for wavelength conversion," in Proceedings of OFC (Anaheim, Calif. 2006), OWS8.
  4. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160Gbit/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave. Technol. 24, 230-236 (2006). [CrossRef]
  5. R. Hess, M. Caraccia-Gross, W. Vogt, E. Gamper, P. A. Besse, M. Duelk, E. Gini, H. Melchior, B. Mikkelsen, M. Vaa, K. S. Jepsen, K. E. Stubkjaer, and S. Bouchoule, "All-optical demultiplexing of 80 to 10 Gb/s signals with monolithic integrated high-performance Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 10, 165-167 (1998). [CrossRef]
  6. B. Sartorius, "3R All-optical signal regeneration," in Proceedings ECOC (Netherlands, 2001), Tu.M.3.1.
  7. K. L. Hall and K. A. Rauschenbach, "100 Gbit/s bitwise logic," Opt. Lett. 23, 1271-1273 (1998). [CrossRef]
  8. R. P. Webb, R. J. Manning, X. Yang, and R. Giller, "All-optical 40Gb/s XOR gate with dual ultrafast nonlinear interferometers," Electron. Lett. 41, 1396-1397 (2005). [CrossRef]
  9. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, M. J. Koonen, G. D. Khoe, H. J. S. Dorren, X. Shu, and I. Bennion, "Error-free 320Gb/s SOA-based wavelength conversion using optical filtering," in Proceedings of OFC (Anaheim, Calif. 2006), PDP28.
  10. B. Dagens, C. Janz, D. Leclerc, V. Verdrager, F. Poingt, I. Guillemot, F. Gaborit, and D. Ottenwalder, "Design optimization of all-active Mach-Zehnder wavelength converters," IEEE Photon. Technol. Lett. 11, 424-426 (1999). [CrossRef]
  11. F. Ginovart, J. C. Simon, and I. Valiente, "Gain recovery dynamics in semiconductor optical amplifier," Opt. Commun. 199, 111-115 (2001). [CrossRef]
  12. G. Talli and M. J. Adams, "Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,"IEEE J. Quantum. Electron. 39, 1305-1313 (2003). [CrossRef]
  13. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5,787-790 (1993). [CrossRef]
  14. M. Eiselt, W. Pieper, and H. G. Weber, "SLALOM: semiconductor laser amplifier in a loop mirror," J. Lightwave. Technol. 13, 2099-2112 (1995). [CrossRef]
  15. Dr. T. Kelly, Amphotonix Ltd, Private communication.
  16. R. Giller, R. J. Manning, and D. Cotter, "Gain and phase recovery of optically excited semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 18, 1061-1063 (2006). [CrossRef]
  17. K. L. Hall, G. Lenz, A. M. Darwish, E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP Diode Lasers," Opt. Commun. 111, 589-612 (1994). [CrossRef]
  18. J. A. Kash, J. C. Tsang, and J. M. Hvam, "Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs," Phys. Rev. Lett. 54, 2151-2154 (1985). [CrossRef] [PubMed]
  19. J. Mork and A. Mecozzi, "Theory of the ultrafast optical response of active semiconductor waveguides," J. Opt. Soc. Am. B 13, 1803-1816 (1996). [CrossRef]
  20. X. Li, D. Alexandropoulos, M. J. Adams, and I. F. Lealman, "Wavelength dependence of gain recovery time in semiconductor optical amplifiers," Proc. SPIE 5722, 343-350 (2005). [CrossRef]
  21. G. Eisenstein, R. S. Tucker, J. M. Wiesenfeld, P. B. Hansen, G. Raybon, B. C. Johnson, T. J. Bridges, F. G. Storz, and C. A. Burrus, "Gain recovery time of traveling-wave semiconductor optical amplifiers," AppL. Phys. Lett 54, 454-456 (1989). [CrossRef]
  22. R. J. Manning and D. A. O. Davies, "Three-wavelength device for all-optical signal processing," Opt. Lett 19, 889-891 (1994). [CrossRef] [PubMed]
  23. L. Zhang, I. Kang, A. Bhardwaj, N. Sauer, S. Cabot, J. Jaques, and D. T. Nielson, "Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells,"IEEE Photon. Technol. Lett. 18, 2323-2325 (2006). [CrossRef]
  24. F. Ginovart and J. C. Simon, "Semiconductor optical amplifier length effects on gain dynamics," J. Phys. D: Appl. Phys. 36, 1473-1476 (2003). [CrossRef]
  25. L. Schares, C. Schubert, C. Schmidt, H. G. Weber, L. Occhi, and G. Guekos, "Phase dynamics of semiconductor optical amplifiers at 10-40 GHz," IEEE J. Quantum. Electron. 39, 1394-1408 (2003). [CrossRef]
  26. M. J. Adams, An introduction to optical waveguides (J. Wiley 1981).
  27. T. Ito, N. Yoshimoto, K. Magari, K. Kishi, and Y. Kondo, "Extremely low power consumption semiconductor optical amplifier gate for WDM applications," Electron. Lett. 33, 1791-1792 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited