OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1817–1822

Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material

Michael James Ventura, Craig Bullen, and Min Gu  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1817-1822 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the synthesis of a homogenous PbS quantum-dot-doped polymer material of thickness up to 100 micrometers. It is shown that high quality micro-void channels of submicrometer diameters can be directly fabricated into this nanocomposite by using an ultrafast femtosecond laser beam. Periodically stacked channels in the form of a three-dimensional photonic crystal woodpile lattices reveals a main stop gaps as well as higher-order gaps that overlaps the near-infrared emission wavelength range of PbS quantum dots. These partial stop gaps are well defined in an angular range from zero to 15 degrees in the stacking direction.

© 2007 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Photonic Crystals

Original Manuscript: December 4, 2006
Revised Manuscript: January 31, 2007
Manuscript Accepted: February 8, 2007
Published: February 19, 2007

Michael J. Ventura, Craig Bullen, and Min Gu, "Direct laser writing of three-dimensional photonic crystal lattices within a PbS quantum-dot-doped polymer material," Opt. Express 15, 1817-1822 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Misawa and S. Juodkazis, eds., 3D laser microfabrication, Principles and applications (Wiley-Vch Verlag, Weinheim, 2006). [CrossRef]
  2. D. Day and M. Gu, "Formation of voids in a doped polymethylmethacrylate polymer," Appl. Phys Lett. 80, 2404-2406 (2002). [CrossRef]
  3. M. J. Ventura, M. Straub, and M. Gu, "Void channel microstructures in resin solids as an efficient way to infrared photonic crystals," Appl. Phys Lett. 82, 1649-1651 (2003). [CrossRef]
  4. M. Straub, M. Ventura, and M. Gu, "Multiple higher-order stop gaps in infrared polymer photonic crystals," Phys. Rev. Lett. 91, 043901 (2003). [CrossRef] [PubMed]
  5. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, "Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation," Phys. Rev. B 73, 214101 (2006). [CrossRef]
  6. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, "Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures," Phys. Rev. Lett. 96, 166101 (2006). [CrossRef] [PubMed]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  8. G. Zhou, and M. Gu, "Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal," Appl. Phys. Lett. 87, 1-3 (2005). [CrossRef]
  9. K. Yamasaki, S. Juodkazis, M. Watanabe, H. B. Sun, S. Matsuo, and H. Misawa, "Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films," Appl. Phys. Lett. 76, 1000-1002 (2000). [CrossRef]
  10. K. Wundke, J. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, "Room-temperature gain at 1.3 µm in PbS-doped glasses," Appl. Phys. Lett. 75, 3060-3062 (1999). [CrossRef]
  11. V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, "Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films," Opt. Lett. 30, 171-173 (2005). [CrossRef] [PubMed]
  12. L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, "Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer," Appl. Phys. Lett. 82, 2895-2897 (2003). [CrossRef]
  13. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, "A solution-processed 1.53 µm quantum dot laser with temperature-invariant emission wavelength," Opt. Express 14, 3273-3281 (2006). [CrossRef] [PubMed]
  14. S. A. McDonald, G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nat. Mater 4, 138-142 (2005). [CrossRef]
  15. L. Pang, Y. M. Shen, K. Tetz, and Y. Fainman, "PMMA quantum dots composites fabricated via use of pre-polymerization," Opt. Express 13, 44-49 (2005). [CrossRef] [PubMed]
  16. M. A. Hines, and G. D. Scholes, "Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution," Adv. Mater. 15, 1844-1849 (2003). [CrossRef]
  17. L. Bakueva, I. Gorelikov, S. Musikhin, X. S. Zhao, E. H. Sargent, and E. Kumacheva, "PbS quantum dots with stable efficient luminescence in the near-IR spectral range," Adv. Mater. 16, 926-929 (2004). [CrossRef]
  18. D. Day, and M. Gu, "Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer," Appl. Opt. 37, 6299-6304 (1998). [CrossRef]
  19. J. Li, B. Jia, G. Zhou, and M. Gu, "Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material," Opt. Express 14, 10740-10745 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited