OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1851–1870

Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings

W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R .M. de Ridder  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1851-1870 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel method is presented for determining the group index, intensity enhancement and delay times for waveguide gratings, based on (Rayleigh) scattering observations. This far-field scattering microscopy (FScM) method is compared with the phase shift method and a method that uses the transmission spectrum to quantify the slow wave properties. We find a minimum group velocity of 0.04c and a maximum intensity enhancement of ∼14.5 for a 1000-period grating and a maximum group delay of ∼80 ps for a 2000-period grating. Furthermore, we show that the FScM method can be used for both displaying the intensity distribution of the Bloch resonances and for investigating out of plane losses. Finally, an application is discussed for the slow-wave grating as index sensor able to detect a minimum cladding index change of 10-8, assuming a transmission detection limit of 10-4.

© 2007 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.7000) Instrumentation, measurement, and metrology : Transmission
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(290.5820) Scattering : Scattering measurements

ToC Category:
Slow Light

Original Manuscript: December 20, 2006
Revised Manuscript: February 8, 2007
Manuscript Accepted: February 9, 2007
Published: February 19, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

W. C. L. Hopman, H. J. W. M. Hoekstra, R. Dekker, L. Zhuang, and R. M. de Ridder, "Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings," Opt. Express 15, 1851-1870 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piche, and N. McCarthy, "Apodizing holographic gratings for the modal control of semiconductor lasers," Appl. Opt. 36, 4993-4998 (1997). [CrossRef] [PubMed]
  2. W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. Hoekstra, and R. M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE J. Sel. Tops. Quantum Electron. 11, 11-16 (2005). [CrossRef]
  3. P. Madasamy, G. N. Conti, P. Poyhonen, Y. Hu, M. M. Morrell, D. F. Geraghty, S. Honkanen, and N. Peyghambarian, "Waveguide distributed Bragg reflector laser arrays in erbium doped glass made by dry Ag film ion exchange," Opt. Eng. 41, 1084-1086 (2002). [CrossRef]
  4. H. C. Wu, Z. M. Sheng, and J. Zhang, "Chirped pulse compression in nonuniform plasma Bragg gratings," Appl. Phys. Lett. 87, 201502/1-3 (2005). [CrossRef]
  5. D. Pezzetta, C. Sibilia, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, "Photonic-bandgap structures in planar nonlinear waveguides: application to second-harmonic generation," J. Opt. Soc. Am. B 18, 1326-1333 (2001). [CrossRef]
  6. D. Faccio, F. Bragheri, and M. Cherchi, "Optical Bloch-mode-induced quasi phase matching of quadratic interactions in one-dimensional photonic crystals," J. Opt. Soc. Am. B 21, 296-301 (2004). [CrossRef]
  7. J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, and R. M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002). [CrossRef]
  8. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light (Princeton University Press, 1995).
  9. M. Soljacic, and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004). [CrossRef] [PubMed]
  10. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998). [CrossRef]
  11. A. Figotin, and I. Vitebskiy, "Slow light in photonic crystals," Waves Random Complex Media 16, 293-382 (2006). [CrossRef]
  12. H. J. W. M. Hoekstra, W. C. L. Hopman, J. Kautz, R. Dekker, and R. M. de Ridder, "A simple coupled mode model for near band-edge phenomena in grated waveguides," accepted for publication in Opt. Quantum Electron. (2006).
  13. W. C. L. Hopman, R. Dekker, D. Yudistira, W. F. A. Engbers, H. J. W. M. Hoekstra, and R. M. De Ridder, "Fabrication and characterization of high-quality uniform and apodized Si3N4 waveguide gratings using laser interference lithography," IEEE Photon. Technol. Lett. 18, 1855-1857 (2006). [CrossRef]
  14. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  15. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett 94 073903 (2005). [CrossRef] [PubMed]
  16. C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg, M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker, "Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight," Phys. Rev. E 73, 016619/1-10 (2006). [CrossRef]
  17. R. S. Jacobsen, A. V. Lavrinenko, L. H. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. I. Borel, "Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides," Opt. Express. 13, 7861-7871 (2005). [CrossRef] [PubMed]
  18. M. C. Netti, C. E. Finlayson, J. J. Baumberg, M. D. B. Charlton, M. E. Zoorob, J. S. Wilkinson, and G. J. Parker, "Separation of photonic crystal waveguides modes using femtosecond time-of-flight," Appl. Phys. Lett. 81, 3927-3929 (2002). [CrossRef]
  19. Y. A. Vlasov, S. Petit, G. Klein, B. Honerlage, and C. Hirlimann, "Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal," Phys. Rev. E 60, 1030-1035 (1999). [CrossRef]
  20. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  21. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902/1-4 (2001). [CrossRef] [PubMed]
  22. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor D'Yerville, D. Cassagne, and C. Jouanin, "Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes," Appl. Phys. Lett. 79, 2312-2314 (2001). [CrossRef]
  23. K. Daikoku, and A. Sugimura, "Direct measurement of wavelength dispersion in optical fibres-difference method," Electron. Lett. 14, 149-151 (1978). [CrossRef]
  24. K. Hosomi, T. Fukamachi, T. Katsuyama, and Y. Arakawa, "Group delay of a coupled-defect waveguide in a photonic crystal," Opt. Rev. 11, 300-302 (2004). [CrossRef]
  25. S. Ryu, Y. Horiuchi, and K. Mochizuki, "Novel chromatic dispersion measurement method over continuous Gigahertz tuning range," J. Lightwave Technol. 7, 1177-1180 (1989). [CrossRef]
  26. W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, "Out-of-plane scattering in 1-D photonic crystal slabs," Opt. Quantum Electron. 34, 195-203 (2002). [CrossRef]
  27. R. Ferrini, R. Houdre, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003). [CrossRef]
  28. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express. 11, 2927-2939 (2003). [CrossRef] [PubMed]
  29. M. Loncar, D. Nedeljkovic, T. P. Pearsall, J. Vuckovic, A. Scherer, S. Kuchinsky, and D. C. Allan, "Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides," Appl. Phys. Lett. 80, 1689-1691 (2002). [CrossRef]
  30. D. J. W. Klunder, F. S. Tan, T. Van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, "Experimental and numerical study of SiON microresonators with air and polymer cladding," J. Lightwave Technol. 21, 1099-1110 (2003). [CrossRef]
  31. D. B. Hunter, M. E. Parker, and J. L. Dexter, "Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating," IEEE Trans. Microwave Theory Tech. 54, 861-867 (2006). [CrossRef]
  32. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, "Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography," J. Vac. Sci. Technol. B 20, 2753-2757 (2002). [CrossRef]
  33. J. F. Lepage, and N. McCarthy, "Analysis of the diffractional properties of dual-period apodizing gratings: theoretical and experimental results," Appl. Opt. 43, 3504-3512 (2004). [CrossRef] [PubMed]
  34. D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona, "Apodized surface-corrugated gratings with varying duty cycles," IEEE Photon. Technol. Lett. 12, 639-641 (2000). [CrossRef]
  35. L. Xuhui, C. Xiangfei, Y. Yuzhe, and X. Shizhong, "A novel apodization technique of variable duty cycle for sampled grating," Opt. Commun. 225, 301-305 (2003). [CrossRef]
  36. H. G. Winful, "The meaning of group delay in barrier tunnelling: A re-examination of superluminal group velocities," New J. Phys. 8, 101/1-16 (2006). [CrossRef]
  37. Olympios, "OlympIOs Integrated Optics Software," C2V, http://www.c2v.nl/software/.
  38. C. De Angelis, F. Gringoli, M. Midrio, D. Modotto, J. S. Aitchison, and G. F. Nalesso, "Conversion efficiency for second-harmonic generation in photonic crystals," J. Opt. Soc. Am. B 18, 348-351 (2001). [CrossRef]
  39. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express. 13, 7145-7159 (2005). [CrossRef] [PubMed]
  40. D. Yudistira, H. Hoekstra, M. Hammer, and D. Marpaung, "Slow light excitation in tapered 1D photonic crystals: Theory," Opt. Quantum Electron. 38, 161-176 (2006). [CrossRef]
  41. P. V. Lambeck, "Integrated optical sensors for the chemical domain," Meas. Sci. Technol. 17, R93-R116 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (5123 KB)     
» Media 2: AVI (2737 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited