OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1898–1906

Temperature dependence of surface photovoltage spectroscopy in vertically coupled self-organized InAs/GaAs quantum dots

C. H. Chan, Y. S. Huang, J. S Wang, and K. K. Tiong  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1898-1906 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (601 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The surface photovoltage (SPV) spectra of a series of vertically stacked self-organized InAs/GaAs quantum dot (QD)-based laser structures with different spacer layer (SL) thickness were obtained as a function of temperature (77 K ≤ T ≤ 300 K). A decrease of the compressive stress for thinner SL samples arising from coherent relaxation enables us to designate the effect of material intermixing as the most probable mechanism of the energetic blueshift of the observed structures. The turnaround characteristic of the temperature-dependent spectral intensity shows that the reduced SPV signal at higher temperature is limited by the carrier scattering and at lower temperature it is governed by the magnitude of built-in electric field and the escape efficiency of the photogenerated carriers. The dot states to be blueshifted by material intermixing are expected to have higher escape rate for carriers out of QDs, thus resulting in lower measurable temperature for the detected SPV signal. The relatively higher signal at low temperature for the 10 nm SL sample provides a direct evidence of the tunneling process of carriers in the stacked QD layers.

© 2007 Optical Society of America

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.7040) Optics at surfaces : Tunneling
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:

Original Manuscript: October 25, 2006
Revised Manuscript: January 23, 2007
Manuscript Accepted: February 5, 2007
Published: February 19, 2007

C.H. Chan, Y. S. Huang, J. S. Wang, and K. K. Tiong, "Temperature dependence of surface photovoltage spectroscopy in vertically coupled self-organized InAs/GaAs quantum dots," Opt. Express 15, 1898-1906 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Pan, E. Towe, and S. Kennerly, "Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors," Appl. Phys. Lett. 73, 1937-1939 (1998). [CrossRef]
  2. S. -W. Lee, K. Hirakawa, and Y. Shimada, "Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures," Appl. Phys. Lett. 75, 1428-1430 (1999). [CrossRef]
  3. D. G. Deppe, D. L. Huffaker, S. Csufak, Z. Zou, G. Park, and O. B. Shchekin, "Spontaneous emission and threshold characteristics of 1.3-μm InGaAs-GaAs quantum-dot GaAs-based lasers," IEEE J. Quantum Electron. 35, 1238-1246 (1999). [CrossRef]
  4. D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A 57,120-126 (1998). [CrossRef]
  5. W. Sheng and J. -P. Leburton, "Enhanced intraband Stark effects in stacked InAs/GaAs self-assembled quantum dots," Appl. Phys. Lett. 78, 1258-1260 (2001). [CrossRef]
  6. G. T. Liu, A. Stinz, H. Li, T. C. Newell, A. L. Gray, P. M. Varangis, K. T. Malloy, and L. F. Lester, "The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures," IEEE J. Quantum Electron. 36, 1272-1279 (2000). [CrossRef]
  7. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, Jr., "Vertically aligned and electronically coupled growth induced InAs islands in GaAs," Phys. Rev. Lett. 76, 952-955 (1996). [CrossRef] [PubMed]
  8. J. S. Wang, R. S. Hsiao, J. F. Chen, C. S. Yang, G. Lin, C. Y. Liang, C. M. Lai, H. Y. Liu, T. W. Chi, and J. Y. Chi, "Engineering laser gain spectrum using electronic vertically coupled InAs/GaAs quantum dots," IEEE Photon. Technol. Lett. 17, 1590-1592 (2005). [CrossRef]
  9. M. V. Maksimov, Yu. M. Shernyakov, S. V. Zaĭtsev, N. Yu. Gordeev, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, A. O. Kosogov, A. V. Sakharov, N. N. Ledentsov, V. M. Ustinov, A. F. Tsatsl’nikov, and Zh. I. Alferov, "Optical properties of vertically coupled InGaAs quantum dots in a GaAs matrix," Semiconductors 31, 571-574 (1997). [CrossRef]
  10. J. -Y. Marzin, J. -M. Gerard, A. Izraël, D. Barrier, and G. Bastard, "Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs," Phys. Rev. Lett. 73, 716-719 (1994). [CrossRef] [PubMed]
  11. M. Grundmann, J. Christen, N. N. Ledenstov, J. Böhrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gösele, J. Heydenreich, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alferov, "Ultranarrow luminescence lines from single quantum dots," Phys. Rev. Lett. 74, 4043-4046 (1995). [CrossRef] [PubMed]
  12. D. Bimberg, M. Grundmann, and N. N. Ledenstov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).
  13. D. Leonard, S. Fared, K. Pond, Y. H. Zhang, J. L. Merz, and P. M. Petroff, "Structural and optical properties of self-assembled InGaAs quantum dots," J. Vac. Sci. Technol. B 12, 2516-2520 (1994). [CrossRef]
  14. K. H. Schmidt, G. Mederiros-Ribeiro, M. Oestreich, P. M. Petroff, and G. H. Döhler, "Carrier relaxation and electronic structure in InAs self-assembled quantum dots," Phys. Rev. B 54, 11346-11353 (1996). [CrossRef]
  15. A. M. Adawi, E. A. Zibik, L. R. Wilson, A. Lemaître, J. W. Cockburn, M. S. Skolnick, M. Hopkinson, and G. Hill, "Comparison of intraband absorption and photocurrent in InAs/GaAs quantum dots,"Appl. Phys. Lett. 83, 602-604 (2003). [CrossRef]
  16. L. Kronik and Y. Shapira, "Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering," Surf. Interface Anal. 31, 954-965 (2001). [CrossRef]
  17. C. H. Chan, H. S. Chen, C. W. Kao, H. P. Hsu, Y. S. Huang, and J. S. Wang, "Investigation of multilayer electronic vertically coupled InAs/GaAs quantum dot structures using surface photovoltage spectroscopy," Appl. Phys. Lett. 89, 22114-22116 (2006). [CrossRef]
  18. C. H. Chan, H. S. Chen, C. W. Kao, H. P. Hsu, Y. S. Huang, and J. S. Wang, "Surface photovoltage spectroscopy and photoluminescence study of vertically coupled self-assembled InAs/GaAs quantum dot structures," J. Appl. Phys. 100, 64301-64306 (2006). [CrossRef]
  19. B. Q. Sun, Z. D. Liu, D. S. Jiang, J. Q. Wu, Z. Y. Xu, Y. Q. Wang, J. N. Wang, and W. K. Ge, "Photovoltage and photoreflectance spectroscopy of InAs/GaAs self-organized quantum dots," Appl. Phys. Lett. 73, 2657-2659 (1998). [CrossRef]
  20. V. M. Ustinov, A. Yu. Egorov, A. R. Kovsh, A. E. Zhukov, M. V. Maximov, A. F. Tsatsul’nikov, N. Yu. Gordeev, S. V. Zaitsev, Yu. M. Shernyakov, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, J. Böhrer, D. Bimberg, A. O. Kosogov, P. Werner, and U. Gösele, "Low-threshold injection lasers based on vertically coupled quantum dots," J. Crystal Growth 175/176, 689-695 (1997). [CrossRef]
  21. M. O. Lipinski, H. Schuler, O. G. Schuler, O. G. Schmidt, and K. Eberl, "Strain-induced material intermixing of InAs quantum dots in GaAs," Appl. Phys. Lett. 77, 1789-1791 (2000). [CrossRef]
  22. J. Toušková, E. Samochin, J. Toušek, J. Oswald, E. Hulicius, J. Pangrác, K. Melichar, and T. Šimeèek, "Photovoltage spectroscopy of InAs/GaAs quantum dot structures," J. Appl. Phys. 91, 10103-10106 (2002). [CrossRef]
  23. J. S. Wang, S. H. Yu, Y. R. Lin, H. H. Lin, C. S. Yang, T. T. Chen, Y. F. Chen, G. W. Shu, J. L. Shen, R. S. Hsiao, J. F. Chen, and J. Y. Chi, "Optical and structural properties of vertically stacked and electronically coupled quantum dots in InAs/GaAs multilayer structures," Nanotechnology 18, 15401-15405 (2007). [CrossRef]
  24. H. Heidemeyer, S. Kiravittaya, C. Müller, N. Y. Jin-Phillipp, and O. G. Schmidt, "Closely stacked InAs/GaAs quantum dots grown at low growth rate," Appl. Phys. Lett. 80, 1544-1546 (2002). [CrossRef]
  25. J. R. Downes, D. A. Faux, and E. P. O’Reilly, "A simple method for calculating strain distributions in quantum dot structures," J. Appl. Phys. 81, 6700-6702 (1997). [CrossRef]
  26. W. Sheng and J. -P. Leburton, "Anomalous quantum-confined Stark effects in stacked InAs/GaAs self-assembled quantum dots," Phys. Rev. Lett. 88, 167401-167404 (2002). [CrossRef] [PubMed]
  27. Gh. Dumitras, H. Riechert, H. Porteanu, and F. Koch, "Surface photovoltage studies of InxGa1-xAs and InxGa1-xAs1-yNy quantum well structures," Phys. Rev. B 66, 205324-205331 (2002). [CrossRef]
  28. M. Bayer and F. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 41308-41311 (2002). [CrossRef]
  29. B. L. Anderson and R. L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill, New York, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited