OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2047–2054

Periodic structures consisting of germanium nanoparticles in buried channel waveguides

Hiroaki Nishiyama, Isamu Miyamoto, Yoshinori Hirata, and Junji Nishii  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2047-2054 (2007)
http://dx.doi.org/10.1364/OE.15.002047


View Full Text Article

Enhanced HTML    Acrobat PDF (2739 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic structures consisting of Ge nanoparticles were formed in buried channel waveguides. Such periodic structures were created in GeO2-B2O3-SiO2 thin glass films by the combination of exposure to interference patterns of ultraviolet laser light and thermally induced phase changes of the glasses. The periodic structures in the channels served as the Bragg gratings with high diffraction efficiencies in the optical communication wavelength. Transmission spectra measurements show the depths and positions of the diffraction peaks as 37.77 dB at 1536.2 nm and 38.72 dB at 1537.6 nm, respectively, for TE-like and TM-like modes. The diffraction efficiencies remain unchanged even after further annealing at temperatures as high as 500°C.

© 2007 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.2900) Materials : Optical storage materials
(220.4610) Optical design and fabrication : Optical fabrication
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 2, 2007
Revised Manuscript: February 7, 2007
Manuscript Accepted: February 12, 2007
Published: March 5, 2007

Citation
Hiroaki Nishiyama, Isamu Miyamoto, Yoshinori Hirata, and Junji Nishii, "Periodic structures consisting of germanium nanoparticles in buried channel waveguides," Opt. Express 15, 2047-2054 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill, P. St. J. Russell, G. Meltz, and A. M. Vengsarkar, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997). [CrossRef]
  2. D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, "Single-mode direct-ultraviolet written channel waveguide laser in neodymium-doped silica on silicon," Opt. Lett. 29, 947-949 (2004). [CrossRef] [PubMed]
  3. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, "Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression," J. Lightwave Technol. 15, 1303-1313 (1997). [CrossRef]
  4. N. M. Litchinitser, and D. B. Patterson, "Analysis of fiber Bragg gratings for dispersion compensation in reflective and transmissive geometries," J. Lightwave Technol. 15, 1323-1328 (1997). [CrossRef]
  5. M. Svalgaard, and S. L. Gilbert, "Stability of short, single-mode erbium-doped fiber lasers," Appl. Opt. 36, 4999-5005 (1997). [CrossRef] [PubMed]
  6. G. N. Conti, S. Bemeschi, M. Brenci, S. Pelli, S. Sebastiani, and G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, "UV photoimprinting of channel waveguides on active SiO2-GeO2 sputtered thin films," Appl. Phys. Lett. 89, 121102 (2006). [CrossRef]
  7. J. Canning, "Photosensitization and photostabilization of laser-induced index changes in optical fibers," Opt. Fiber Technol. 6, 275-289 (2000). [CrossRef]
  8. M. Åslund and J. Canning, "Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber," Opt. Lett. 25, 692-694 (2000). [CrossRef]
  9. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Cambell, "Enhanced UV photosensitivity in boron codoped germanosilicate fibers," Electron. Lett. 29, 45-47 (1993). [CrossRef]
  10. H. Nishiyama, K. Kintaka, J. Nishii, T. Sano, E. Ohmura, and I. Miyamoto, "Thermo- and photo-sensitive GeO2-B2O3-SiO2 thin glass films," Jpn. J. Appl. Phys. 42, 559-563 (2003). [CrossRef]
  11. J. Nishii, K. Kintaka, H. Nishiyama, and M. Takahashi, "Photosensitive and athermal glasses for optical waveguides," J. Non-Cryst. Solids 326-327, 464-471 (2003). [CrossRef]
  12. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, "Densification involved in the UV-based photoseisitivity of silica glasses and optical fibers," J. Lightwave Technol. 15, 1329-1342 (1997). [CrossRef]
  13. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, "Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber," J. Lightwave Technol. 15, 1470-1477 (1997). [CrossRef]
  14. H. Nishiyama, I. Miyamoto, S. Matsumoto, M. Saito, K. Fukumi, K. Kintaka, and J. Nishii, "Periodic precipitation of crystalline Ge nanoparticles in Ge-B-SiO2 thin glass films," Appl. Phys. Lett. 85, 3734-3736 (2004). [CrossRef]
  15. H. Nishiyama, I. Miyamoto, S. Matsumoto, M. Saito, K. Kintaka, and J. Nishii, "Direct laser writing of thermally stabilized channel waveguides with Bragg gratings," Opt. Express 12, 4589-4595 (2004). [CrossRef] [PubMed]
  16. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, "Imaging of free-space interference patterns used to manufacture fiber Bragg gratings," Appl. Opt. 39, 6128-6135 (2000). [CrossRef]
  17. M. Takahashi, K. Ichii, Y. Tokuda, T. Uchino, and T. Yoko, "Photochemical reaction of divalent-germanium center in germanosilicate glasses under intense near-ultraviolet laser excitation: Origin of 5.7 eV band and site selective excitation of divalent-germanium center," J. Appl. Phys. 92, 3442-3446 (2002). [CrossRef]
  18. N. Groothoff, and J. Canning, "Enhanced type IIA gratings for high-temperature operation," Opt. Lett. 29, 2360-2362 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited