OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2055–2066

Recursion formula for reflectance and the enhanced effect on the light group velocity control of the stratified and phase-shifted volume index gratings

Guoquan Zhang, Weiyue Che, Bin Han, and Yiling Qi  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2055-2066 (2007)
http://dx.doi.org/10.1364/OE.15.002055


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derived a recursion formula for the reflectance of the stratified and phase-shifted volume index gratings. The characteristics of the reflectance spectra of the stratified and phase-shifted volume index gratings were studied based on the recursion formula. It is shown that narrow bandwidth transparency peaks appear within the stop-band of the reflectance spectrum of the volume index gratings due to the intervention of the homogeneous buffer layers that induce the phase-shifts between neighboring volume index gratings. The spectral positions of the transparency peaks can be shifted within the stop-band by controlling the phase-shift, i.e., the buffer layer thickness. The described properties may find applications in addressable band-pass filter, switching, wavelength division multiplexing, and de-multiplexing. The dispersion near the transparency peaks of the stratified and phase-shifted volume index grating is found to be sharply enhanced as compared to the uniform volume index gratings. Significantly enhanced control on the group velocity of light by several orders of magnitude while keeping high transmittance is demonstrated in the stratified and phase-shifted volume index grating.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.4170) Optical devices : Multilayers
(260.2030) Physical optics : Dispersion

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 14, 2006
Revised Manuscript: January 12, 2007
Manuscript Accepted: January 12, 2007
Published: March 5, 2007

Citation
Guoquan Zhang, Weiyue Che, Bin Han, and Yiling Qi, "Recursion formula for reflectance and the enhanced effect on the light group velocity control of the stratified and phase-shifted volume index gratings," Opt. Express 15, 2055-2066 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  3. R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, "Narrowband grating resonator filters in InGaAsP/InP waveguides," Appl. Phys. Lett. 49, 125-127 (1986). [CrossRef]
  4. G. P. Agrawal and S. Radic, "Phase-Shifted Fiber Bragg Gratings and their Application for Wavelength Demultiplexing," IEEE Photon. Technol. Lett. 6, 995-997 (1994). [CrossRef]
  5. R. Zengerle and O. Leminger, "Phase-shifted Bragg-Grating Filters with Improved Transmission Characteristics," J. Lightwave Technol. 13, 2354-2358 (1995). [CrossRef]
  6. L. Wei and J. W. Y. Lit, "Phase-Shifted Bragg Grating Filters with Symmetrical Structures," J. Lightwave Technol. 15, 1405-1410 (1997). [CrossRef]
  7. F. Bakhti and P. Sansonetti, "Design and Realization of Multiple Quater-Wave Phase-Shifts UV-Written Bandpass Filter in Optical Fibers," J. Lightwave Technol. 15, 1433-1437 (1997). [CrossRef]
  8. Ch. Martinez and P. Ferdinand, "Analysis of phase-shifted fiber Bragg gratings written with phase plate," Appl. Opt. 38, 3223-3228 (1999). [CrossRef]
  9. S. Longhi, M. Marano, P. Laporta, O. Svelto, and M. Belmonte, "Propagation, manipulation, and control of picosecond optical pulses at 1.5 μm in fiber Bragg gratings," J. Opt. Soc. Am B 19, 2742-2757 (2002). [CrossRef]
  10. Y. Painchaud, A. Chandonnet, and J. Lauzon, "Chirped fibre gratings produced by tilting the fibre," Electron. Lett. 31, 171-172 (1995). [CrossRef]
  11. B. Malo, S. Thériault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, "Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask," Electron. Lett. 31, 223-225 (1995). [CrossRef]
  12. Ch. Martinez, S. Magne, and P. Ferdinand, "Apodized fiber Bragg gratings manufactured with the phase plate process," Appl. Opt. 41, 1733-1740 (2002). [CrossRef] [PubMed]
  13. R. V. Johnson, A. R. Tanguay, "Stratified volume holographic optical elements," Opt. Lett. 13, 189-191 (1988). [CrossRef] [PubMed]
  14. G. P. Nordin, R. V. Johnson, A. R. Tanguay, "Diffraction properties of stratified volume holographic optical elements," J. Opt. Soc. Am. A 9, 2206-2217 (1992). [CrossRef]
  15. R. De Vré and L. Hesselink, "Analysis of photorefractive stratified volume holographic optical elements," J. Opt. Soc. Am. B 11, 1800-1808 (1994). [CrossRef]
  16. J. J. Stankus, S. M. Silence, W. E. Moerner, and G. C. Bjorklund, "Electric-field-switchable stratified volume holograms in photorefractive polymers," Opt. Lett. 19, 1480-1482 (1994). [CrossRef] [PubMed]
  17. V. M. Petrov, C. Caraboue, J. Petter, T. Tschudi, V. V. Bryksin, and M. P. Petrov, "A dynamic narrow-band tunable optical filter," Appl. Phys. B 76, 41-44 (2003). [CrossRef]
  18. Y. Lai, W. Zhang, L. Zhang, J. A. R. Williams, and I. Bennion, "Optically tumable fiber grating transmission filters," Opt. Lett. 28, 2446-2448 (2003). [CrossRef] [PubMed]
  19. A. D’Orazio, M. De Sario, V. Petruzzelli, and F. Prudenzano, "Photonic band gap filter for wavelength division multiplexer," Opt. Express 11, 230-239 (2003). [CrossRef] [PubMed]
  20. M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt. 26, 3474-3478 (1987). [CrossRef] [PubMed]
  21. M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," J. Lightwave Technol. 18, 236-242 (2000). [CrossRef]
  22. M. A. Rodriguez, M. S. Malcuit, and J. J. Butler, "Transmission properties of refrective index-shifted Bragg gratings," Opt. Commun. 177, 251-257 (2000). [CrossRef]
  23. S. Khorasani and K. Mehrany, "Differential transfer-matrix method for solution of one-dimensional linear nonhomogeneous optical sturctures," J. Opt. Soc. Am. B 20, 91-96 (2003). [CrossRef]
  24. S. Khorasani and A. Adibi, "New analytical approach for computation of band structure in one-dimensional periodic media," Opt. Commun. 216, 439-451 (2003). [CrossRef]
  25. J. J. Monzón, T. Yonte, and L. L. Sánchez-Soto, "Charcterizing the reflectance of periodic layered media," Opt. Commun. 218, 43-47 (2003). [CrossRef]
  26. I. S. Nefedov and S. A. Tretyakov, "Photonic band gap structure containing metamaterial with negative permittivity and permeability," Phys. Rev. E 66, 036611-1-4 (2002). [CrossRef]
  27. J. R. Birge and F. X. Kärtner, "Efficient analytic computation of dispersion from multilayer structures," Appl. Opt. 45, 1478-1483 (2006). [CrossRef] [PubMed]
  28. D. Yevick and L. Thylén, "Analysis of gratings by the beam-propagation method," J. Opt. Soc. Am. 72, 1084-1089 (1982). [CrossRef]
  29. L. Thylén and D. Yevick, "Beam propagation method in anisotropic media," Appl. Opt. 21, 2751-2754 (1982). [CrossRef] [PubMed]
  30. L Thylén and Ch. M. Lee, "Beam-propagation method based on matrix diagonalization," J. Opt. Soc. Am. A 9, 142-146 (1992). [CrossRef]
  31. Y. Tsuji, M. Koshiba, and N. Takimoto, "Finite element beam propagation method for anisotropic optical waveguides," J. Lightwave Technol. 17, 723-728 (1999). [CrossRef]
  32. P. K. Kelly and M. Piket-May, "Propagation characteristics for a one-dimensional grounded finite height finite length electromagnetic crystal," J. Lightwave Technol. 17, 2008-2012 (1999). [CrossRef]
  33. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  34. M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, and R. P. Leavitt, "Ultrashort pulse propagation at the photonic band edge: large tunable group delay with minimal distortion and loss," Phys. Rev. E 54, R1078-R1081 (1996). [CrossRef]
  35. S. H. Lin, K. Y. Hsu, and P. Yeh, "Experimental observation of the slowdown of optical beams by a volume-index grating in a photorefractive LiNbO3 crystal," Opt. Lett. 25, 1582-1584 (2000). [CrossRef]
  36. S. Zhu, N. Liu, H. Zheng, and H. Chen, "Time delay of light propagation through defect modes of one-dimensional photonic band-gap structures," Opt. Commun. 174, 139-144 (2000). [CrossRef]
  37. J. Liu, B. Shi, D. Zhao, and X. Wang, "Optical delay in defective photonic bandgap structures," J. Opt. A: Pure Appl. Opt. 4, 636-639 (2002). [CrossRef]
  38. S. Bette, C. Caucheteur, M. Wuilpart, P. Mégret, R. Garcia-Olcina, S. Sales, and J. Capmany, "Spectral characterization of differential group delay in uniform fiber Bragg gratings," Opt. Express 13, 9954-9960 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited