OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2166–2177

Reduction of nonlinear phase noise using optical phase conjugation in quasi-linear optical transmission systems

Shiva Kumar and Ling Liu  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2166-2177 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical expression for the variance of nonlinear phase noise for a quasi-linear system using the midpoint optical phase conjugation (OPC) is obtained. It is shown that the the system with OPC and dispersion inversion (DI) can exactly cancel the nonlinear phase noise up to the first order in nonlinear coefficient if the amplifier and the end point of the system are equidistant from the OPC. It is found that the nonlinear phase noise variance of the midpoint phase-conjugated optical transmission system with DI is smaller than that of the system without DI.

© 2007 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5040) Nonlinear optics : Phase conjugation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 28, 2006
Revised Manuscript: November 2, 2006
Manuscript Accepted: February 21, 2007
Published: March 5, 2007

Shiva Kumar and Ling Liu, "Reduction of nonlinear phase noise using optical phase conjugation in quasi-linear optical transmission systems," Opt. Express 15, 2166-2177 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Gordon and L. F. Mollenauer, "Phase noise in photonic communication systems using linear amplifiers," Opt.Lett. 15, 1351-1353 (1990). [CrossRef] [PubMed]
  2. A. Mecozzi, "Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers," J. Lightwave Technol. 12, 1993-2000 (1994). [CrossRef]
  3. C. McKinstrie, C. Xie, and T. Lakoba, "Efficient modeling of phase jitter in dispersion-managed soliton systems," Opt. Lett. 27, 1887-1889 (2002). [CrossRef]
  4. A. G. Green, P. P. Mitra, and L. G. L. Wegener, "Effect of chromatic dispersion on nonlinear phase noise" Opt. Lett. 28, 2455-2457 (2003). [CrossRef] [PubMed]
  5. C. J. McKinstrie and C. Xie, "Phase jitter in single-channel soliton systems with constant dispersion," IEEE J. Sel. Top. Quantum Electron. 8, 616-625 (2002). [CrossRef]
  6. H. Kim and A. H. Gnauck, "Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise," IEEE Photon. Technol. Lett. 15, 320-322 (2003). [CrossRef]
  7. M. Hanna, D. Boivin, P.-A. Lacourt, and J.-P. Goedgebuer, "Calculation of optical phase jitter in dispersionmanaged systems by the use of the moment method," J. Opt. Soc. Am. B 21, 24-28 (2004). [CrossRef]
  8. K.-P. Ho and H.-C. Wang, "Comparison of nonlinear phase noise and intrachannel four wave mixing for RZ-DPSK signals in dispersive transmission systems," IEEE Photon. Technol. Lett. 17, 1426-1428 (2005). [CrossRef]
  9. K.-P. Ho, "Mid-Span Compensation of Nonlinear Phase Noise," Optics Comm. 245, 391-398 (2005). [CrossRef]
  10. S. Kumar, "Effect of dispersion on nonlinear phase noise in optical transmission systems," Opt.Lett. 30, 3278- 3280 (2005). [CrossRef]
  11. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P.M. Krummrich, W. Sohler, G.-D. Khoe, and H. de Waardt, "Optical phase conjugation for ultra long haul phase- shift-keyed transmission," IEEE J. of Lightwave Technol. 24, 54-64 (2006). [CrossRef]
  12. F. Zhang, C.-A. Bunge, and K. Petermann, "Analysis of nonlinear phase noise in single-channel return-to-zero differential phase-shift keying transmission systems," Opt. Lett. 31, 1038-1040 (2006). [CrossRef] [PubMed]
  13. K.-P. Ho and H.-C. Wang, "Effect of dispersion on nonlinear phase noise," Opt. Lett. 31, 2109-2111 (2006). [CrossRef] [PubMed]
  14. C. J. McKinstrie, S. Radic, and C. Xie, "Reduction of soliton phase jitter by in-line phase conjugation," Opt. Lett. 28, 1519-1521 (2003). [CrossRef] [PubMed]
  15. D. Boivin, G. -K. Chang, J. R. Barry, and M. Hanna, "Reduction of Gordon-Mollenauer phase noise in dispersionmanaged systems using in-line spectral inversion," J. Opt. Soc. Am. B 23, 2019-2023 (2006). [CrossRef]
  16. X. Zhu, S. Kumar and X. Li, "Comparison between DPSK and OOK modulation schemes in nonlinear optical transmission systems," App. Opt. 45, 6812-6822 (2006). [CrossRef]
  17. A. G. Striegler and B. Schmauss, "Compensation of intrachannel effects in symmetric dispersion-managed transmission systems," J. of Lightwave Technol. 22, 1877-1882 (2004). [CrossRef]
  18. G. P. Agrawal, "Fiber-optic communication systems," (John Wiley and Sons, New York,1995).
  19. A. Chowdhury, and R. J. Essiambre, "Optical phase conjugation and psuedo linear transmission," Opt.Lett. 29, 1105-1107 (2004). [CrossRef] [PubMed]
  20. P. Minzioni, F. Alberti, and A. Schiffini, "Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation," IEEE Photon. Technol. Lett. 16, 813-815 (2004). [CrossRef]
  21. P. Kaewplung, T. Angkaew, and K. Kikuchi, "Simultaneous suppression of third order dispersion and side band instability in single channel optical fiber transmission by midway optical phase conjugation employing higher order dispersion management," J. Lightwave Technol. 21, 1465-1473 (2003). [CrossRef]
  22. H. Wei and D. V. Plant, "Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation," Opt. Express 12, 1938-1958 (2004). [CrossRef] [PubMed]
  23. H. Wei and D. V. Plant, "Intra-channel nonlinearity compensation with scaled translational symmetry," Opt. Express,  12, 4282-4296 (2004). [CrossRef] [PubMed]
  24. X. Tang and Z. Wu, "Reduction of intrachannel nonlinearity using optical phase conjugation," IEEE Photon. Technol. Lett. 17, 1863-1865 (2005). [CrossRef]
  25. R. Holzlohner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, "Accurate calculation of eye diagrams and bit error rates in optical transmission systems using linearization," J. Lightwave Technol. 20, 389-400 (2002). [CrossRef]
  26. I. Gabitov and S. Turitsyn, "Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation," Opt. Lett. 21, 327-329 (1996). [CrossRef]
  27. E. E. Narimanov and P. Mitra, "The channel capacity of a fiber optics communication system: perturbation theory," J. Lightwave Technol. 20, 530-537 (2002). [CrossRef]
  28. A. Vanucci, P. Serena, A. Bononi, "The RP method: a new tool for the iterative solution of the nonlinear Schrodinger equation," J. Lightwave Technol. 20, 1102-1112 (2002). [CrossRef]
  29. S. Kumar and D. Yang, "Second order theory for self-phase modulation and cross-phase modulation in optical fibers," J. Lightwave Technol. 23, 2073 (2005). [CrossRef]
  30. I. Tomkos, D. Chowdhury, J. Conradi, J. Culverhouse, K. Ennser, C. Giroux, B. Hallock, T. Kennedy, A. Kruse, S. Kumar, N. Lascar, I. Roudas, R. S. Vodhanel, and C.-C. Wang, "Demonstration of negative dispersion fibers for DWDM metropolitan area networks," IEEE J. Sel. Top. Quantum Electron. 7, 439-460 (2001). [CrossRef]
  31. V. Bhagavatula, G. Berkey, D. Chowdhury, A. Evans, and M. Li, "Novel fibers for dispersion-managed high-bitrate systems," Optical Fiber Conference, TuD2, 21-22, 1998.
  32. S. Kumar and A. F. Evans, "Collision-induced impairments in in dispersion managed fiber systems" in "Massive WDM and TDM solitons systems," A. Hasegawa, ed., (Kluwer Academic, Dordrecht, 2000), pp. 351-364.
  33. A. Mecozzi, C. B. Clausen, and M. Shtaif, "Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission," IEEE Photon. Technol. Lett. 12, 392-394 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited