OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2234–2243

Balanced homodyne detection of Bragg microholograms in photopolymer for data storage

Frédéric Guattari, Guillaume Maire, Kevin Contreras, Carole Arnaud, Gilles Pauliat, Gérald Roosen, Safi Jradi, and Christiane Carré  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2234-2243 (2007)
http://dx.doi.org/10.1364/OE.15.002234


View Full Text Article

Enhanced HTML    Acrobat PDF (1619 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Wavelength multiplexed holographic bit oriented memories are serious competitors for high capacity data storage systems. For data recording, two interfering beams are required whereas one of them should be blocked for readout in previously proposed systems. This makes the system complex. To circumvent this difficulty and make the device simpler, we validated an architecture for such memories in which the same two beams are used for recording and reading out. This balanced homodyne scheme is validated by recording holograms in a Lippmann architecture.

© 2007 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Holography

History
Original Manuscript: November 28, 2006
Revised Manuscript: January 26, 2007
Manuscript Accepted: January 29, 2007
Published: March 5, 2007

Citation
Frédéric Guattari, Guillaume Maire, Kevin Contreras, Carole Arnaud, Gilles Pauliat, Gérald Roosen, Safi Jradi, and Christiane Carré, "Balanced homodyne detection of Bragg microholograms in photopolymer for data storage," Opt. Express 15, 2234-2243 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage, Springer, Series in Optical Sciences (Springer-Verlag, 2000).
  2. G. J. Steckman, A. Pu, D. Psaltis, "Storage density of shift-multiplexed holographic memory," Appl. Opt. 40, 3387-3394 (2001). [CrossRef]
  3. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity Holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004). [CrossRef] [PubMed]
  4. K. Anderson and K. Curtis, "Polytopic multiplexing," Opt. Lett. 29, 1402-1404 (2004). [CrossRef] [PubMed]
  5. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, and G. Sincerbox, "An optically accessed memory using the Lippmann process for information storage," Optical and Electro-Optical Information Processing (MIT Press, 1965).
  6. S. Orlic, S. Ulm, and H.-J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A: Pure Appl. Opt. 3, 72-81(2001). [CrossRef]
  7. A. Labeyrie, J. P. Huignard, and B. Loiseaux, "Optical data storage in microfibers," Opt. Lett. 23, 301-303 (1998). [CrossRef]
  8. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005). [CrossRef] [PubMed]
  9. I. Sh. Steinberg, "Multilayer recording of the microholograms in lithium niobate," in Photorefractive Effects, Materials and Devices, Vol. 99 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), 610-615.
  10. M. Dubois, X. Shi, C. Erben, K.-L. Longley, E.-P. Boden, and B.-L. Lawrence, "Characterization of microholograms recorded in a thermoplastic medium for three-dimensional optical data storage," Opt. Lett. 30, 1947-949 (2005). [CrossRef] [PubMed]
  11. G. Maire, G. Pauliat, and G. Roosen, "Homodyne detection readout for bit-oriented holographic memories," Opt. Lett. 31, 175-177 (2006). [CrossRef] [PubMed]
  12. J.-J. Yang and M.-R. Wang, "White light micrograting multiplexing for high density data storage," Opt. Lett. 31, 1304-1306 (2006). [CrossRef] [PubMed]
  13. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H.-J. Eichler, "Acrylamide-based photopolymer for microholographic data storage," Opt. Mater. 28, 1329-1333 (2006). [CrossRef]
  14. A. Murciano, S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Holographic reflection gratings in photopolymerizable solgel material," Opt. Lett. 31, 2317-2319 (2006). [CrossRef] [PubMed]
  15. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytical expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  16. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  17. J. Shamir, "Paradigms for bit-oriented holographic information storage," Appl. Opt. 45, 5212-5222 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited