OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2262–2272

Optical tracking of spherical micro-objects in spatially periodic interference fields

Tomáš Čižmár and Pavel Zemánek  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2262-2272 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new method that provides precise detection of micro-object position with respect to a spatially periodic illumination field. Altering the mutual position of the object and the illumination field causes that a pattern of scattered light detected perpendicularly by a CCD camera changes. We present a procedure how to employ this pattern changes to track micrometer-size object in the standing wave and how to apply this method to optical tracking of Brownian particle even in periodic illumination field in motion.

© 2007 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.6970) Physical optics : Total internal reflection
(290.5850) Scattering : Scattering, particles

ToC Category:
Image Processing

Original Manuscript: December 4, 2006
Revised Manuscript: February 9, 2007
Manuscript Accepted: February 11, 2007
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Tomáš Cižmár and Pavel Zemánek, "Optical tracking of spherical micro-objects in spatially periodic interference fields," Opt. Express 15, 2262-2272 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999). [CrossRef] [PubMed]
  2. C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule dna mechanics," Nature 421, 423-427 (2003). [CrossRef] [PubMed]
  3. J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," J. Colloid Interface Sci. 179, 298-310 (1996). [CrossRef]
  4. P. T. Korda, G. C. Spalding, and D. G. Grier, "Evolution of a colloidal critical state in an optical pinning potential landscape," Phys. Rev. B 66, 024,504 (2002). [CrossRef]
  5. K. Ladavac, K. Kasza, and D. G. Grier, "Sorting mesoscopic objects with periodic potential landscapes: Optical fractionation," Phys. Rev. E 70, 010,901 (2004). [CrossRef]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  7. J.-C. Meiners and S. R. Quake, "Direct measurement of hydrodynamic cress correlations between tow particles in an external potential," Phys. Rev. Lett. 82, 2211 (1999). [CrossRef]
  8. M. Polin, D. G. Grier, and S. R. Quake, "Anomalous Vibrational Dispersion in Holographically Trapped Colloidal Arrays," Phys. Rev. Lett. 96, 088,101 (2006). [CrossRef]
  9. A. Simon and A. Libchaber, "Escape and Synchronization of a Brownian particle," Phys. Rev. Lett. 68, 3375- 3378 (1992). [CrossRef] [PubMed]
  10. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, "Optical thermal ratchet," Phys. Rev. Lett. 74, 1504-1507 (1995). [CrossRef] [PubMed]
  11. S.-H. Lee and D. G. Grier, "One-dimensional thermal ratchets," J. Phys.: Condens. Matter 17, S3685-S3695 (2005). [CrossRef]
  12. W. J. Parak, T. Pellegrino, and C. Plank, "Labelling of cells with quantum dots," Nanotechnology 16, R9-R25 (2005). [CrossRef] [PubMed]
  13. J. Lippincott-Schwartz and G. H. Patterson, "Development and Use of Fluorescent Protein Markers in Living Cells," Science 300, 87-91 (2003). [CrossRef] [PubMed]
  14. M. Dahan, "From analog to digital: exploring cell dynamics with single quantum dots," Histochem. Cell Biol. 125, 451-456 (2006). [CrossRef]
  15. M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles," Biophys. J. 81, 2378 - 2388 (2001). [CrossRef] [PubMed]
  16. R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise Nanometer Localization Analysis for Individual Fluorescent Probes," Biophys. J. 82, 2775-2783 (2002). [CrossRef] [PubMed]
  17. M. Speidel, A. Jonas, and E.-L. Florin, "Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging," Opt. Lett. 28, 69-71 (2003). [CrossRef] [PubMed]
  18. M. Wu, J. W. Roberts, and M. Buckley, "Three-dimensional fluorescent particle tracking at micron-scale using a single camera," Exp. Fluids 38, 461-465 (2005). [CrossRef]
  19. M. J. Lang and S. M. Block, "Resource letter: LBOT-1: Laser-based optical tweezers," Am. J. Phys. 71, 201-215 (2003). [CrossRef]
  20. I. M. Peters, B. G. de Grooth, J. M. Schins, C. G. Figdor, and J. Greve, "Three-dimensional single-particle tracking with nanometer resolution," Rev. Sci. Instrum. 69, 2762-2766 (1998). [CrossRef]
  21. I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve, "3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins," Cytometry 36, 189-194 (1999). [CrossRef] [PubMed]
  22. M. W. Allersma, F. Gittes, M. J. deCastro, R. J. Stewart, and C. F. Schmidt, "Two-Dimensional Tracking of ncd Motility by Back Focal Plane Interferometry," Biophys. J. 74, 1074-1085 (1998). [CrossRef] [PubMed]
  23. F. Gittes and C. F. Schmidt, "Interference model for back-focal plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998). [CrossRef]
  24. A. Rohrbach and E. H. K. Stelzer, "Three-dimensional position detection of optically trapped dielectric particles," J. Appl. Phys. 91, 5474-5488 (2002). [CrossRef]
  25. M.-T. Wei and A. Chiou, "Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants," Opt. Express 13, 5798-5806 (2005). [CrossRef] [PubMed]
  26. W. Denk and W. W. Webb, "Optical measurment of picometer displacements of transparent microscopics objects," Appl. Opt. 29, 2382 (1990). [CrossRef] [PubMed]
  27. R. J. Oetama and J. Y. Walz, "A new approach for analyzing particle motion near an interface using total internal reflection microscopy," J. Colloid Interface Sci. 284, 323-331 (2005). [CrossRef] [PubMed]
  28. A. R. Clapp, A. G. Ruta, and R. B. Dickinson, "Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface," Rev. Sci. Instrum. 70, 2627-2636 (1999). [CrossRef]
  29. A. R. Clapp and R. B. Dickinson, "Direct Measurement of Static and Dynamic Forces between a Colloidal Particle and a Flat Surface Using a Single-Beam Gradient Optical Trap and Evanescent Wave Light Scattering," Langmuir 17, 2182-2191 (2001). [CrossRef]
  30. D. Prieve, "Measurement of colloidal forces with TIRM," Advances in Colloid and Interface Science 82, 93-125 (1999). [CrossRef]
  31. T. Cizmar, M. Siler, M. Sery, P. Zemanek, V. Garces-Chavez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035,105 (2006).
  32. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174,101-1-174,101-3 (2005).
  33. M. Siler, T. Cizmar, M. Sery, and P. Zemanek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006). [CrossRef]
  34. R. C. Gonzalez and P. Wintz, Digital Image Processing (Addison-Wesley Publishing Company, Reading, 1987).
  35. P. Reimann, "Brownian Motors: noisy transport far from equilibrium," Physics Reports 361, 57-265 (2002). [CrossRef]
  36. T. Cizmar, "Optical traps generated by non-traditional beams," Ph.D. thesis, Masaryk University in Brno (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2303 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited