OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2307–2314

Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor

Juejun Hu, Vladimir Tarasov, Anu Agarwal, Lionel Kimerling, Nathan Carlie, Laeticia Petit, and Kathleen Richardson  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2307-2314 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated and tested, to the best of our knowledge, the first microfluidic device monolithically integrated with planar chalcogenide glass waveguides on a silicon substrate. High-quality Ge23Sb7S70 glass films have been deposited onto oxide coated silicon wafers using thermal evaporation, and high-index-contrast channel waveguides have been defined using SF6 plasma etching. Microfluidic channel patterning in photocurable resin (SU8) and channel sealing by a polydimethylsiloxane (PDMS) cover completed the device fabrication. The chalcogenide waveguides yield a transmission loss of 2.3 dB/cm at 1550 nm. We show in this letter that using this device, N-methylaniline can be detected using its well-defined absorption fingerprint of the N-H bond near 1496 nm. Our measurements indicate linear response of the sensor to varying N-methylaniline concentrations. From our experiments, a sensitivity of this sensor down to a N-methylaniline concentration 0.7 vol. % is expected. Given the low-cost fabrication process used, and robust device configuration, our integration scheme provides a promising device platform for chemical sensing applications.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.7390) Optical devices : Waveguides, planar
(300.1030) Spectroscopy : Absorption

ToC Category:
Integrated Optics

Original Manuscript: January 4, 2007
Revised Manuscript: February 5, 2007
Manuscript Accepted: February 19, 2007
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Juejun Hu, Vladimir Tarasov, Anu Agarwal, Lionel Kimerling, Nathan Carlie, Laeticia Petit, and Kathleen Richardson, "Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor," Opt. Express 15, 2307-2314 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Verpoorte and N. De Rooij, "Microfluidics meets MEMS," Proc. IEEE. 91, 930-953 (2003). [CrossRef]
  2. P. Friis, K. Hoppe, O. Leistiko, K. Mogensen, J. Hubner, and J. Kutter, "Monolithic integration of microfluidic channels and optical waveguides in silica on silicon," Appl. Opt. 40, 6246-6251 (2001). [CrossRef]
  3. N. Petersen, K. Mogensen, and J. Kutter, "Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices," Electrophoresis 23, 3528-3536 (2002). [CrossRef] [PubMed]
  4. L. Zhu, Y. Huang, and A. Yariv, "Integrated microfluidic variable optical attenuator," Opt. Express 13, 9916-9921 (2005). [CrossRef] [PubMed]
  5. T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, and M. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," J. Lightwave Technol. 15, 1343-1347 (1997). [CrossRef]
  6. Z. Sun, J. Zhou, and R. Ahuja, "Structure of phase change materials for data storage," Phy. Rev. Lett. 96, 055507 (2006). [CrossRef]
  7. A. Ozols, D. Saharovs, and M. Reinfelde, "Holographic recording in amorphous As2S3 films at 633 nm," J. Non-Cryst. Sol. 352, 2652-2656 (2006). [CrossRef]
  8. W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, "Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier," Etri Journal 27, 411-417 (2005). [CrossRef]
  9. A. Mairaj, C. Riziotis, A. Chardon, P. Smith, D. Shepherd, and D. Hewak, "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification," Appl. Phys. Lett. 81, 3708-3710 (2002). [CrossRef]
  10. X. Zhang, L. Calvez, V. Seznec, H. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, "Infrared transmitting glasses and glass-ceramics," J. Non-Cryst.Sol. 352, 2411-2415 (2006). [CrossRef]
  11. C. Kerbage, A. Hale, A. Yablon, R. Windeler, and B. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193 (2001). [CrossRef]
  12. P. Mach, M. Dolinski, K. Baldwin, J. Rogers, C. Kerbage, R. Windeler, and B. Eggleton, "Tunable microfluidic optical fiber," Appl. Phys. Lett. 80, 4294-4296 (2002). [CrossRef]
  13. O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, "Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses," Opt. Mater. 17, 379-386 (2001). [CrossRef]
  14. J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," J. Lightwave Technol. 17, 1184-1191 (1999). [CrossRef]
  15. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef] [PubMed]
  16. J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling, Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, K. Richardson are preparing a manuscript to be called "Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films."
  17. A. Ganjoo, H. Jain, C. Yu, R. Song, J. Ryan, J. Irudayaraj, Y. Ding, and C. Pantano, "Planar chalcogenide glass waveguides for IR evanescent wave sensors," J. Non-Cryst. Sol. 352, 584-588 (2006). [CrossRef]
  18. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, "Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S," Mater. Chem. Phys. 97, 64-70 (2006). [CrossRef]
  19. R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005). [CrossRef]
  20. C. Xu, W. Huang, M. Stern, and S. Chaudhuri, "Full-vectorial mode calculation by finite difference method," IEE Proc. Optoelectron.,  141, 281-286 (1994). [CrossRef]
  21. S. Shaji, S. Eappen, T. Rasheed, and K. Nair, "NIR vibrational overtone spectra of N-methylaniline, N,N-dimethylaniline and N,N-diethylaniline - a conformational structural analysis using local mode model," Spectrochim. Acta, Part A,  60, 351-355 (2004). [CrossRef]
  22. J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, "Low-loss integrated planar chalcogenide waveguides for chemical sensing," Proc. SPIE 6444 (to be published).
  23. V. Zolotarev, B. Mikhilov, L. Alperovich, S. Popov, "Dispersion and absorption of liquid water in the infrared and radio regions of the spectrum," Opt. Spectrosc. 27, 430-432 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited