OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2315–2322

Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector

Alexander W. Fang, Richard Jones, Hyundai Park, Oded Cohen, Omri Raday, Mario J. Paniccia, and John E. Bowers  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2315-2322 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we report a racetrack resonator laser integrated with two photo-detectors on the hybrid AlGaInAs-silicon evanescent device platform. Unlike previous demonstrations of hybrid AlGaInAs-silicon evanescent lasers, we demonstrate an on-chip racetrack resonator laser that does not rely on facet polishing and dicing in order to define the laser cavity. The laser runs continuous-wave (c.w.) at 1590 nm with a threshold of 175 mA, has a maximum total output power of 29 mW and a maximum operating temperature of 60 C. The output of this laser light is directly coupled into a pair of on chip hybrid AlGaInAs-silicon evanescent photodetectors used to measure the laser output. OCIS codes: (140.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits.

© 2007 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: January 24, 2007
Revised Manuscript: February 15, 2007
Manuscript Accepted: February 16, 2007
Published: March 5, 2007

Alexander W. Fang, Richard Jones, Hyundai Park, Oded Cohen, Omri Raday, Mario J. Paniccia, and John E. Bowers, "Integrated AlGaInAs-silicon evanescent race track laser and photodetector," Opt. Express 15, 2315-2322 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, "The optical age of silicon." Nature 427, 615−618 (2004).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, Chichester, West Sussex, 2004).
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-Verlag, Berlin, 2004).
  4. D. A. Miller, "Optical interconnects to silicon." IEEE J. Sel. Top. Quant. Electron. 6, 1312−1317 (2000). [CrossRef]
  5. H. Rong et al. "A continuous-wave Raman silicon laser." Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269 (2004). [CrossRef] [PubMed]
  7. R. Espinola, J. Dadap, R. Osgood Jr., S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004). [CrossRef] [PubMed]
  8. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon." Nat. Mater. 4, 887 (2005). [CrossRef] [PubMed]
  9. P. Rojo Romeo, J. Van Campenhout, P. Regreny, A. Kazmierczak, C. Seassal, X. Letartre, G. Hollinger, D. Van Thourhout, R. Baets, J. M. Fedeli, and L. Di Cioccio, "Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs," Opt. Express,  14, 3864-3871 (2006). [CrossRef] [PubMed]
  10. R. S. Jacobsen,  et al., "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  11. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglul, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  12. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  13. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, & F. Priolo,"Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  14. A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003). [CrossRef]
  15. B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000). [CrossRef]
  16. S. Lombardo,  et al. "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993). [CrossRef]
  17. J. Liu, D. Pan, S. Jongthammanurak, K. Wada, L. C. Kimerling, and J. Michel, "Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform, " Opt. Express 15, 623-628 (2007). [CrossRef] [PubMed]
  18. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  19. H. Park, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, "40 C Continuous-Wave Electrically Pumped Hybrid Silicon Evanescent Laser," International Semiconductor Laser Conference 2006 (ISLC 2006), post deadline paper, September 2006.
  20. D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Top. Quantum Electron. 8, 118 (2002). [CrossRef]
  21. H. Boudinov, H. H. Tan, and C. Jagadish., "Electrical isolation of n-type and p-type InP layers by proton bombardment," J. Appl. Phys. 89, 5343-5347, (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited