OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2336–2340

High refractive index chalcogenide glass for photonic crystal applications

Kimmo Paivasaari, Victor K. Tikhomirov, and Jari Turunen  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2336-2340 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high refractive index Te-enriched bulk chalcogenide glass Ge20As20Se14Te46 (n≈3.3) has been patterned by ablation using four- and two-beam interference femto-second laser setups operating at 800 nm. The regular arrays of 0.8 μm diameter and more than 0.8 μm depth holes and/or grooves of typical size of 1×1 mm2 have been written on the surface of the glass in a time-scale of 1 second with 50 femtosecond pulses. The high photosensitivity of this narrow-gap semiconductor glass to the femtosecond irradiation is ascribed to a free electron absorption typical of metals, which is caused by laser-induced heating of the glass.

© 2007 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(160.2750) Materials : Glass and other amorphous materials
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Laser Micromachining

Original Manuscript: November 22, 2006
Revised Manuscript: January 21, 2007
Manuscript Accepted: January 22, 2007
Published: March 5, 2007

Kimmo Paivasaari, Victor K. Tikhomirov, and Jari Turunen, "High refractive index chalcogenide glass for photonic crystal applications," Opt. Express 15, 2336-2340 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, "Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres," Infrared Phys. Technol. 45, 115-123 (2004). [CrossRef]
  2. D. Freeman, S. Madden, and B. Luther-Davies, "Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005). [CrossRef] [PubMed]
  3. V. N. Astratov, A. M. Adawi, M. S. Skolnik, V. K. Tikhomirov, V. M. Lyubin, D. G. Lidzey, M. Ariu, and A. L. Reynolds, "Opal photonic crystals infiltrated with chalcogenide glasses," Appl. Phys. Lett. 78, 4094-4096 (2001). [CrossRef]
  4. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. van Freymann, "Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses," Adv. Mater. 18, 265-269 (2006). [CrossRef]
  5. A. Feigel, M. Veinger, S: Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003). [CrossRef]
  6. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, "Thermal-sensing fibre devices by multimaterial codrawing," Adv. Mater. 18, 845-849 (2005). [CrossRef]
  7. M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, "Integrated fibres for self-monitored optical transport," Nat. Mater. 4, 820-825 (2005). [CrossRef]
  8. V. K. Tikhomirov, "Chalcogenide glasses for photonic crystal applications," presented at the NATO ASI "Photonic crystals and localization of light," Heraklion, Greece, 12-26 June 2000.
  9. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Show, and I.D. Aggarwal, "Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibres," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  10. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006). [CrossRef] [PubMed]
  11. K. Finsterbusch, N. Baker, V. G. Ta’eed, B. J. Eggleton, D. Choi, S. Madden, B. Luther-Davies, "Long-period gratings in chalcogenide As2S3 rib waveguides," Electron. Lett. 42, 1094-1095 (2006). [CrossRef]
  12. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, "Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes," 14, 369-376 (2006).
  13. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]
  14. J. H. Klein-Wiele, J. Bekesi, and P. Simon, "Sub-micron patterning of solid materials with ultraviolet femtosecond pulses," Appl. Phys. A,  79, 775-778 (2004). [CrossRef]
  15. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001). [CrossRef]
  16. Y. Nakata, T. Okada, and M. Maeda, "Lithographical laser ablation using femtosecond laser," Appl. Phys. A,  79, 1481-1483 (2004). [CrossRef]
  17. Y.-C. Kim and Y. R. Do, "Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting," Opt. Express 13, 1598-1603 (2005). [CrossRef] [PubMed]
  18. N. J. Baker, H. W. Lee, I. C. Littler, C. M. de Sterke, B.J . Eggleton, D.-Y. Choi, S. Madden, B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006). [CrossRef] [PubMed]
  19. A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited