OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2398–2408

Study on the third and second-order nonlinear optical properties of GeS2-Ga2S3-AgCl chalcohalide glasses

Guoping Dong, Haizheng Tao, Xiudi Xiao, Changgui Lin, Yueqiu Gong, Xiujian Zhao, Saisai Chu, Shufeng Wang, and Qihuang Gong  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2398-2408 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Third-order optical nonlinearities, χ(3) of GeS2-Ga2S3-AgCl chalcohalide glasses have been studied systematically utilizing the femtosecond time-resolved optical Kerr effect (OKE) technique at 820nm, showing that the value of χ(3) enhances with increasing atomic ratio of (S+Cl/2)/(Ge+Ga). From the compositional dependence of glass structure by Raman spectra, a strong dependence χ(3) upon glass structure has been found, i.e. compared with [ClxS3-xGe(Ga)-Ge(Ga)S3-xClx] ethane-like s.u. as the structural defectiveness, [Ge(Ga)S4-xClx] mixed tetrahedra make greater contribution to the enhancement of χ(3). The maximum χ(3) among the present glasses is as large as 5.26×10-13esu (A1 (80GeS2-10Ga2S3-10AgCl)), and the nonlinear refractive index (n2) of A1 glass is also up to 4.60×10-15 cm2/W. In addition, using Maker fringe technique, SHG was observed in the representative A1 glass poled by electron beam (25 kV, 25 nA, 15 min), and the second-order optical nonlinear susceptibility is estimated to be greater than 6.1 pm/V. There was no evident structural change detected in the as-prepared and after irradiated A1 glass by the Raman spectra, and maybe only electronic transition and distortion of electron cloud occurred in the glasses. The large third/second-order optical nonlinearities have made these GeS2-Ga2S3-AgCl chalcohalide glasses as promising materials applied in photoelectric fields.

© 2007 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:

Original Manuscript: December 15, 2006
Revised Manuscript: January 25, 2007
Manuscript Accepted: January 29, 2007
Published: March 5, 2007

Guoping Dong, Haizheng Tao, Xiudi Xiao, Changgui Lin, Yueqiu Gong, Xiujian Zhao, Saisai Chu, Shufeng Wang, and Qihuang Gong, "Study on the third and second-order nonlinear optical properties of GeS2-Ga2S3-AgCl chalcohalide glasses," Opt. Express 15, 2398-2408 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tanaka, "Optical nonlinearity in photonic glasses," J. Mater. Sci. Mater. Electron. 16, 633-643 (2005). [CrossRef]
  2. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, "Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses," Opt. Commun. 219, 427-433 (2003). [CrossRef]
  3. F. Smektala, J. Troles, V. Couderc, A. Barthelemy, G. Boudebs, F. Sanchez, H. Zeghlache, G. Martinelli, Y. Quiquempois, and S. Bailleux, "Third and second order nonlinear optical properties of Ge-Se-S-As chalcogenide glasses," Proc SPIE 4628, 30-38 (2002). [CrossRef]
  4. X. F. Wang, S. X. Gu, J. G. Yu, C. L. Liu, X. J. Zhao, and H. Z. Tao, "Formation and properties of chalcogenide glasses in the GeS2-Ga2S3-CdS system," Mater. Chem. Phys. 83, 284-288 (2004). [CrossRef]
  5. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, "Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching," Opt. Lett. 29, 265-267 (2004). [CrossRef] [PubMed]
  6. R. C. Miller, "Optical second harmonic generation in piezoelec-tric crystals," Appl. Phys. Lett. 5, 17-19 (1964). [CrossRef]
  7. H. Z. Tao, G. P. Dong, Y. B. Zhai, H. T. Guo, X. J. Zhao, Z. W. Wang, S. S. Chu, S. F. Wang, and Q. H. Gong, "Femtosecond third-order optical nonlinearity of the GeS2-Ga2S3-CdI2 new chalcohalide glasses," Solid State Commun. 138, 485-488 (2006). [CrossRef]
  8. X. F. Wang, Z. W. Wang, J. G. Yu, C. L. Liu, X. J. Zhao, and Q. H. Gong, "Large and ultrafast third-order optical nonlinearity of GeS2-Ga2S3-CdS chalcogenide glass," Chem. Phys. Lett. 399, 230-233 (2004). [CrossRef]
  9. A. Narazaki, K. Tanaka, and K. Hirao, "Surface structure and second-order nonlinear optical properties of thermally poled WO3-TeO2 glasses doped with Na+," J. Opt. Soc. Am. B 19, 54-62 (2002). [CrossRef]
  10. P. G. Kazansky, A. Kamal, P. S. J. Russell, "Erasure of thermally poled second-order nonlinearity in fused silica by electron implantation," Opt. Lett. 18, 1141-1143 (1993). [CrossRef] [PubMed]
  11. T. Fujiwara, M. Talahashi, and A. J. Ikushima, "Second-harmonic generation in germanosilicate glass poled with ArF laser irradiation," Appl. Phys. Lett. 71, 1032-1034 (1997). [CrossRef]
  12. M. X. Qiu, F. Pi, and G. Orriols, "The role of lead component in second-harmnonic generation in lead silica by electron-beam irradiation," Appl. Phys. Lett. 73, 3040-3042 (1998). [CrossRef]
  13. I. V. Kityk, "IR-induced second harmonic generation in Sb2Te3-BaF2-PbCl2 glasses," J. Phys. Chem. B 107, 10083-10087 (2003). [CrossRef]
  14. H.Z. Tao, S. Mao, G.P. Dong, H.Y. Xiao and X.J. Zhao, "Raman scattering studies of the Ge-In sulfide glasses," Solid State Commun. 137, 408-412 (2006). [CrossRef]
  15. G. P. Dong, H. Z. Tao, S. S. Chu, S. F. Wang, X. J. Zhao, Q. H. Gong, X. D. Xiao, and C. G. Lin, "Study on the structure dependent ultrafast third-order optical nonlinearity of GeS2-In2S3 chalcogenide glasses," Opt. Commun. 270, 373-378 (2007). [CrossRef]
  16. G.P. Dong, H.Z. Tao, X.D. Xiao, C.G. Lin, X.J. Zhao, S. Mao, "Mechanism of electron beam poled SHG in 0.95GeS2·0.05In2S3 chalcogenide glasses," J. Phys. Chem. Solids (doi:10.1016/j.jpcs.2006.10.002).
  17. G. P. Dong, H. Z. Tao, X. D. Xiao, C. G. Lin, and X. J. Zhao, "Study on the formation, thermal, optical and physical properties of GeS2-Ga2S3-AgCl novel chalcohalide glasses," J. Phys. Chem. Solids (Submit).
  18. J. E. Aber, M. C. Newstein, and B. A. Garetz, "Femtosecond optical kerr effect measurement in silicate glasses," J. Opt. Soc. Am. B 17, 120-127 (2000). [CrossRef]
  19. Q. M. Liu, X. J. Zhao, F. X. Gan, J. Mid, S. X. Qian, "Femtosecond optical Kerr effect study of Ge10As40S30Se20 film," Solid State Commun. 134, 513-517 (2005) [CrossRef]
  20. M. K. Casstevens, M. Samoc, J. Pfleger, and P. N. Prasad, "Dynamics of third-order nonlinear optical processes in Langmuir-Blodgett and evaporated films of phthalocyanines," J. Chem. Phys. 92, 2019-2024 (1990). [CrossRef]
  21. K. Minoshima, M. Taiji, and T. Kobayashi, "Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility," Opt. Lett. 16, 1683-1685 (1991). [CrossRef] [PubMed]
  22. G. Lucovsky, F. L. Galeener, R. C. Kezer, R. H. Geils, and H. A. Six, "Structural interpretation of the infrared and raman spectra of glasses in the alloy system Ge1-x Sx," Phys. Rev. B 10, 5134-5146 (1974). [CrossRef]
  23. H. Z. Tao, X. J. Zhao, C. B. Jing, H. Yang, and S. Mao, "Raman scattering studies of the GeS2-Ga2S3-CsCl glassy system," Solid State Commun. 133, 327-332 (2005). [CrossRef]
  24. R. A. Myers, N. Mukherjee, S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," 16, 1732-1734 (1991).
  25. T. E. Everhart and P. H. Hoff, "Determination of kilovolt electron energy dissipation vs penetration distance in solid materials," J. Appl. Phys. 42, 5837-5846 (1971). [CrossRef]
  26. M. Guignard, V. Nazabal, J. Troles, F. Smektala, H. Zeghlache, Y. Quiquempois, A. Kudlinski, and G. Martinelli, "Second-harmonic generation of thermally poled chalcogenide glass," Opt. Express. 13, 789-795 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited