OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2421–2431

Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera

Barry Cense, Mircea Mujat, Teresa C. Chen, B. Hyle Park, and Johannes F. de Boer  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2421-2431 (2007)
http://dx.doi.org/10.1364/OE.15.002421


View Full Text Article

Enhanced HTML    Acrobat PDF (2579 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-sensitive optical coherence tomography can be used to measure the birefringence of biological tissue such as the human retina. Previous measurements with a time-domain polarization-sensitive optical coherence tomography system revealed that the birefringence of the human retinal nerve fiber layer is not constant, but varies as a function of location around the optic nerve head. Here we present a spectral-domain polarization-sensitive optical coherence tomography system that uses a spectrometer configuration with a single line scan camera and a Wollaston prism in the detection arm. Since only one camera has to be synchronized with other components in the system, the design is simplified considerably. This system is 60 times faster than a time-domain polarization-sensitive optical coherence tomography system. Data was acquired using concentric circular scans around the optic nerve head of a young healthy volunteer and the acquisition time for 12 circular scans was reduced from 72 s to 1.2 s. The acquired data sets demonstrate variations in retinal thickness and double pass phase retardation per unit depth that were similar to data from the same volunteer taken with a time-domain polarization-sensitive system. The double pass phase retardation per unit depth of the retinal nerve fiber layer varied between 0.18 and 0.40 degrees/μm, equivalent to a birefringence of 2.2 ∙ 10-4 and 4.8 ∙ 10-4 respectively, measured at 840 nm.

© 2007 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 22, 2006
Revised Manuscript: February 13, 2007
Manuscript Accepted: February 15, 2007
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Barry Cense, Mircea Mujat, Teresa C. Chen, B. H. Park, and Johannes F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2421


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and J.G. Fujimoto, "Optical Coherence Tomography," Science  254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  3. M.R. Hee, D. Huang, E.A. Swanson, and J.G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  4. J.F. de Boer, T.E. Milner, M.J.C. van Gemert, and J.S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  5. J.F. de Boer, T.E. Milner, and J.S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999). [CrossRef]
  6. C.E. Saxer, J.F. de Boer, B.H. Park, Y.H. Zhao, Z.P. Chen, and J.S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000). [CrossRef]
  7. S.L. Jiao and L.H.V. Wang, "Jones-matrix imaging of biological tissues with quadruple- channel optical coherence tomography," J. Biomed. Opt. 7, 350-358 (2002). [CrossRef] [PubMed]
  8. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, and J.F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002). [CrossRef]
  9. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, and J.F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004). [CrossRef] [PubMed]
  10. B. Cense, "Optical coherence tomography for retinal imaging," PhD thesis, (2005).
  11. X.R. Huang, H. Bagga, D.S. Greenfield, and R.W. Knighton, "Variation of peripapillary retinal nerve fiber layer birefringence in normal human subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004). [CrossRef] [PubMed]
  12. X.R. Huang and R.W. Knighton, "Microtubules contribute to the birefringence of the retinal nerve fiber layer," Invest. Ophthalmol. Vis. Sci. 46, 4588-4593 (2005). [CrossRef] [PubMed]
  13. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  14. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometry," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 38, 6133-6137 (1999). [CrossRef]
  15. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  16. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  17. M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  18. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002). [CrossRef]
  19. B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, and J.F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m," Opt. Express 13, 3931-3944 (2005). [CrossRef] [PubMed]
  20. E. Götzinger, M. Pircher, and C.K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). [CrossRef] [PubMed]
  21. M. Yamanari, S. Makita, V.D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006). [CrossRef] [PubMed]
  22. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, and J.F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  23. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  24. A.N.S.I., Safe use of lasers. 1993, Laser Institute of America: New York.
  25. M. Mujat, B.H. Park, B. Cense, T.C. Chen, and J.F. De Boer, "Auto-calibration of spectral-domain optical coherence tomography spectrometers for in-vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. (Submitted), (2006).
  26. M. Mujat, R.C. Chan, B. Cense, B.H. Park, C. Joo, T. Akkin, T.C. Chen, and J.F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005). [CrossRef] [PubMed]
  27. W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kartner, J.S. Schuman, and J.G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited