OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2535–2540

Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber

Eiichi Takahashi, Susumu Kato, Yuji Matsumoto, and Leonid L. Losev  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2535-2540 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broad Raman-multi-frequency spectra were generated from the resonant two-color excitation of the deuterium molecule rotational Raman transition (J=0→2), using ultraviolet bi-harmonic lasers with a quartz hollow fiber. Fifty pure rotational Raman spectral lines (34 lines that have intensity within 10% of the strongest spectral line) from 230 to 290 nm were generated at a gas pressure of 30 kPa. Furthermore, vibrational-rotational Raman spectral lines of almost 300 lines from 220 to 600 nm were also generated by increasing the gas pressure to 60 kPa.

© 2007 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: November 29, 2006
Revised Manuscript: January 22, 2007
Manuscript Accepted: January 31, 2007
Published: March 5, 2007

Eiichi Takahashi, Susumu Kato, Yuji Matsumoto, and Leonid L. Losev, "Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber," Opt. Express 15, 2535-2540 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kawano, C. H. Lin, T. Imasaka, "Generation of high-order rotational lines by four-wave Raman mixing using a high-power picosecond Ti:Sapphire laser," Appl. Phys. B 63, 121-124 (1996). [CrossRef]
  2. A. V. Konyashchenko and L. L. Losev, " Multifrequency Raman generation in liquid carbon tetrachloride with two-color pumping," Opt. Commun. 260, 712-715 (2006). [CrossRef]
  3. E. Takahashi, L. L.  Losev, T. Tabuchi, Y. Matsumoto, S. Kato, I. Okuda, T. Aota, Y. Owadano, "Generation of 30 pure rotational Raman sidebands using two-color pumping of D2 gas by KrF laser," Opt. Commun. 257, 133-138 (2006). [CrossRef]
  4. D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, "Rotational Raman generation with near-unity conversion efficiency," Opt. Lett. 27, 769-771 (2002). [CrossRef]
  5. D. D. Yavuz, D. R. Walker, M. Y. Shverdin, G. Y. Yin, and S. E. Harris, "Quasiperiodic Raman technique for ultrashort pulse generation," Phys. Rev. Lett. 91, 233602 (2003). [CrossRef] [PubMed]
  6. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Generation of a single-cycle optical pulse," Phys. Rev. Lett. 94, 033904 (2005). [CrossRef] [PubMed]
  7. A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285-304 (2005). [CrossRef]
  8. L. L. Losev and A. P. Lutsenko "Parametric Raman laser with a discrete output spectrum equal in width to the pump frequency," Quantum. Electron. 23, 919-926 (1993). [CrossRef]
  9. G. S. McDonald, G. H. C. New, L. L. Losev, A. P. Lutsenko, and M. Shaw, "Ultrabroad-bandwidth multifrequency Raman generation," Opt. Lett. 19, 1400-1402 (1994). [CrossRef] [PubMed]
  10. K. S. Syed, G. S. McDonald, and G. H. C. New, "Transverse effects in ultrabroadband multifrequency Raman generation," J. Opt. Soc. Am. B 17, 1366-1375 (2000). [CrossRef]
  11. S. Sensarn, S. N. Goda, G. Y. Yin, and S. E. Harris, "Molecular modulation in a hollow fiber," Opt. Lett. 31, 2836-2838 (2006). [CrossRef] [PubMed]
  12. A. M. Burzo, A. V. Chugreev, and A. V. Sokolov, " Optimized control of generation of few cycle pulses by molecular modulation," Opt. Commun. 264, 454-462 (2006). [CrossRef]
  13. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz, "A novel-high energy pulse compression system: generation of multigigawatt 5-fs pulses," Appl. Phys. B 65, 189-196 (1997). [CrossRef]
  14. K. D. Van Den Hout, P. W. Hermans, E. Mazur, and H. F. P. Knaap, "The broadening and shift of the rotational Raman lines for hydrogen isotopes at low temperatures," Physica 104A, 509-547 (1980).
  15. R. W. Minck, E. E. Hagenlocker, W. G. Rado, "Stimulated pure rotational Raman scattering in deuterium," Phys. Rev. Lett. 17, 229-231 (1966). [CrossRef]
  16. W. K. Bischel and M. J. Dyer, "Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2," Phys. Rev. A 33, 3113-3123 (1986). [CrossRef] [PubMed]
  17. K. C. Smyth, G. J. Rosasco, and W. S. Hurst "Measurement and rate law analysis of D2 Q-branch line broadening coefficients for collisions with D2, He, Ar, H2 and CH4," J. Chem. Phys. 87, 1001-1011 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited