OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2555–2563

Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids

Gong-Ru Lin, Chun-Jung Lin, and Chi-Kuan Lin  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2555-2563 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The premier observation on the enhanced light emission from such a metal-SiOx-Si light emitting diode (MOSLED) with Si nano-pyramids at SiOx/Si interface is demonstrated at low biases. The Si nano-pyramids exhibits capability in providing the roughness of the SiOx/Si interface, and improving the Fowler-Nordheim (F-N) tunneling mechanism based carrier injection through the novel SiOx/nano-Si-pyramid/Si structure. HRTEM analysis reveals a precisely controllable size and concentration of the crystallized interfacial Si nano-pyramids at 10nm(height)×10nm(width) and within the range of 108-1011 cm-2, respectively. With these Si nano-pyramids at a surface density of up to 1012/cm2, the F-N tunneling threshold can be reduce from 7 MV/cm to 1.4 MV/cm. The correlation between surface density of the interfacial Si nano-pyramids and the threshold F-N tunneling field has been elucidated. Such a turn-on reduction essentially provides a less damaged SiOx/Si interface as the required bias for the electroluminescence of the MOSLED is greatly decreased, which thus suppresses the generation of structural damage related radiant defects under a lower biased condition and leads to a more stable near-infrared electroluminescence with a narrowing linewidth and an operating lifetime lengthened to >3 hours. An output EL power of nearly 150 nW under a biased voltage of 75 V and current density of 32 mA/cm2 is reported for the first time.

© 2007 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.5230) Optoelectronics : Photoluminescence
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Optical Devices

Original Manuscript: November 17, 2006
Revised Manuscript: January 26, 2007
Manuscript Accepted: February 5, 2007
Published: March 5, 2007

Gong-Ru Lin, Chun-Jung Lin, and Chi-Kuan Lin, "Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids," Opt. Express 15, 2555-2563 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1993). [CrossRef]
  2. Q. Y. Ye, R. Tsu, and E. H. Nicollian, "Resonant tunneling via microcrystalline-silicon quantum confinement," Phys. Rev. B 44, 1806-1811 (1991). [CrossRef]
  3. G. G. Qin, A. P. Li, B. R. Zhang, and B. C. Li, "Visible electroluminescence from semitransparent Au film/extra thin Si-rich silicon oxide film/p-Si structure," J. Appl. Phys. 78, 2006-2009 (1995). [CrossRef]
  4. H. Z. Song, X. M. Bao, N. S. Li, and J. Y. Zhang, "Relation between electroluminescence and photoluminescence of Si+-implanted SiO2," J. Appl. Phys. 82, 4028-4032 (1997). [CrossRef]
  5. C. H. Lin, S. C. Lee, and Y. F. Chen, "Strong room-temperature photoluminescence of hydrogenated amorphous silicon oxide and its correlation to porous silicon," Appl. Phys. Lett. 63, 902-904 (1993). [CrossRef]
  6. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  7. F. Iacona, G. Franzo, and C. Spinella, "Correlation between luminescence and structural properties of Si nanocrystals," J. Appl. Phys. 87, 1295-1303 (2000). [CrossRef]
  8. G. Franzo, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, "Electroluminescence of silicon nanocrystals in MOS structures," Appl. Phys. A 74, 1-5 (2002). [CrossRef]
  9. C.-J. Lin and G.-R. Lin, "Defect-enhanced visible electroluminescence of multi-energv silicon-implanted silicon dioxide film," IEEE J. Quantum Electronics 41, 441-447 (2005). [CrossRef]
  10. G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou, and Y.-L. Chueh, "Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2," J. Appl. Phys. 97, 094306 (2005). [CrossRef]
  11. R. H. Fowler and L. W. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. London, Ser. A 119, 173 (1928). [CrossRef]
  12. S. S. Gong, M. E. Burnham, N. D. Theodore, and D. K. Schroder, "Evaluation of Qbd for electrons tunneling from the Si/SiO2 interface compared to electron tunneling from the poly-Si/SiO2 interface," IEEE Trans. Electron Dev. 40, 1251-1257 (1993). [CrossRef]
  13. K. V. Maydell, S. Brehme, N. H. Nickel, and W. Fuhs, "Electronic transport in P-doped laser-crystallized polycrystalline silicon," Thin Solid Films 487, 93-96 (2005). [CrossRef]
  14. M. Ushiyama, Y. Ohji, T. Nishimoto, K. Komori, H. Murakoshi, H. Kume, and S. Tachi, "Two dimensionally inhomogeneous structure at gate electrode/gate insulator interface causing Fowler-Nordheim current deviation innonvolatile memory," IEEE Inr. Reliability Phys. Symp. 29, 331-336 (1991).
  15. T. Ohmi, M. Miyashita, M. Itano, T. Imaoka, I. Kawanabe, "Dependence of thin-oxide films quality on surface microroughness," IEEE Trans. Electron Dev. 39, 537-545 (1992). [CrossRef]
  16. T. Sugino, C. Kimura, and T. Yamamoto, "Electron field emission from boron-nitride nanofilms," Appl. Phys. Lett. 80, 3602-3604 (2002). [CrossRef]
  17. Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, "InGaN-GaN MQW LEDs with Si treatment," IEEE Photon. Tech. Lett. 17, 1620-1622 (2005). [CrossRef]
  18. C.-L. Lee, S.-C. Lee, and W.-I. Lee, "Nonlithographic random masking and regrowth of GaN microhillocks to improve light-emitting diode efficiency," Jpn. J. Appl. Phys. 45, L4-L7 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited