OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2564–2572

High-quality amplitude jitter reduction and extinction enhancement using a power-symmetric NOLM and a polarizer

O. Pottiez, B. Ibarra-Escamilla, and E. A. Kuzin  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2564-2572 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Four procedures for simultaneous high-quality amplitude jitter reduction and extinction ratio enhancement of optical data streams are presented and studied using numerical simulations. They all rely on the use of a power-balanced NOLM, optionally followed by a polarizer. The setup can be operated in various regimes, leading to several switching characteristics with different merits in the frame of the proposed application. These are discussed and compared with the results obtained using other NOLM configurations.

© 2007 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.4320) Optical devices : Nonlinear optical devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: August 30, 2006
Revised Manuscript: January 23, 2007
Manuscript Accepted: January 29, 2007
Published: March 5, 2007

O. Pottiez, B. Ibarra-Escamilla, and E. A. Kuzin, "High-quality amplitude jitter reduction and extinction enhancement using a power-symmetric NOLM and a polarizer," Opt. Express 15, 2564-2572 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Yamashita and M. Shahed, "Optical 2R regeneration using cascaded fiber four-wave mixing with suppressed spectral spread," IEEE Photon. Technol. Lett. 18, 1064-1066 (2006). [CrossRef]
  2. E. Ciaramella, F. Curti, and S. Trillo, "All-optical signal reshaping by means of four-wave mixing in optical fibers," IEEE Photon. Technol. Lett. 13, 142-144 (2001). [CrossRef]
  3. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, and A. R. Chraplyvy, "All-optical regeneration in one- and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003). [CrossRef]
  4. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of European Conference on Optical Communications (1998), pp. 475-476.
  5. T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004). [CrossRef]
  6. M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004). [CrossRef]
  7. M. Matsumoto, "Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration," Opt. Express 14, 11018-11023 (2006). [CrossRef] [PubMed]
  8. N. J. Doran and D. Wood, "Nonlinear optical loop mirror," Opt. Lett. 13, 56-58 (1988). [CrossRef] [PubMed]
  9. M. Attygalle, A. Nirmalathas, and H. F. Liu, "Novel technique for reduction of amplitude modulation of pulse trains generated by subharmonic synchronous mode-locked laser," IEEE Photon. Technol. Lett. 14, 543-545 (2002). [CrossRef]
  10. M. D. Pelusi, Y. Matsui, and A. Suzuki, "Pedestal suppression from compressed femtosecond pulses using a nonlinear fiber loop mirror," IEEE J. Quantum Electron. 35, 867-874 (1999). [CrossRef]
  11. M. Meissner, R. Rösch, B. Schmauss, and G. Leuchs, "12 dB of noise reduction by a NOLM-based 2-R regenerator," IEEE Photon. Technol. Lett. 15, 1297-1299 (2003). [CrossRef]
  12. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, F. Gutiérrez-Zainos, U. Ruiz-Corona, and J. T. Camas-Anzueto, "High-order amplitude regularization of an optical pulse train using a power-symmetric NOLM with adjustable contrast," IEEE Photon. Technol. Lett. 17, 154-156 (2005). [CrossRef]
  13. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, "All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme," IEEE J. Sel. Top. Quantum Electron. 10, 192-196 (2004). [CrossRef]
  14. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, "Theory of nonlinear loop mirrors with twisted low-birefringence fiber," J. Opt. Soc. Am. B 18, 919-925 (2001). [CrossRef]
  15. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez Martínez, "Theoretical investigation of the NOLM with highly twisted fibre and a λ/4 birefringence bias," Opt. Commun. 254, 152-167 (2005). [CrossRef]
  16. A. Striegler and B. Schmauss, ‘‘Extinction ratio improvement by an advanced NOLM setup,’’IEEE Photon. Technol. Lett. 18, 1058-1060 (2006). [CrossRef]
  17. P. V. Mamyshev and N. A. Mamysheva, "Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing," Opt. Lett. 24, 1454-1456 (1999). [CrossRef]
  18. T. Sakamoto and K. Kikuchi, "Nonlinear optical loop mirror with an optical bias controller for achieving full-swing operation of gate switching," IEEE Photon. Technol. Lett. 16, 545-547 (2004). [CrossRef]
  19. I. T. Lima, A. O. Lima, Y. Sun, H. Jiao, J. Zweck, C. R. Menyuk, and G. M. Carter, "A receiver model for optical fiber communication systems with arbitrarily polarized noise," J. Lightwave Technol. 23, 1478-1490 (2005). [CrossRef]
  20. A. Bogoni, L. Potì, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, ‘‘Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,’’Electron. Lett. 41, 435-436 (2005). [CrossRef]
  21. S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited