OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2607–2612

Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons

Eyal Feigenbaum and Meir Orenstein  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2607-2612 (2007)
http://dx.doi.org/10.1364/OE.15.002607


View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modal volumes at the nano-scale, much smaller than the “diffraction-limit”, with appreciable quality factors, are calculated for a dielectric cavity embedded in a space between metal plates. The modal field is bounded between the metal interfaces in one dimension and can be reduced in size almost indefinitely in this dimension. But more surprisingly, due to the “plasmonic” slow wave effect, this reduction is accompanied by a similar in-plane modal size reduction. Another interesting result is that higher order cavity modes exhibit lower radiation loss. The scheme is studied with effective index analysis, and validated by FDTD simulations.

© 2007 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 23, 2007
Revised Manuscript: February 18, 2007
Manuscript Accepted: February 19, 2007
Published: March 5, 2007

Citation
Eyal Feigenbaum and Meir Orenstein, "Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons," Opt. Express 15, 2607-2612 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2607


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003). [CrossRef] [PubMed]
  2. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, "Smallest possible electromagnetic mode volume in a dielectric cavity," IEE Proc.: Optoelectron. 145, 391 (1998). [CrossRef]
  3. J. Scheuer, W. M. Green, G. A. DeRose, and A. Yariv, "Lasing from a circular Bragg nanocavity with an ultra small modal volume," Appl. Phys. Lett. 86, 251101 (2005). [CrossRef]
  4. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, "Simultaneous inhibition and redistribution of spontaneous light emission in Photonic Crystals," Science 308, 1296 (2005). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [CrossRef] [PubMed]
  6. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158 (2003). [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003). [CrossRef] [PubMed]
  8. P. Grinberg, E. Feigenbaum, and M. Orenstein, "2D Photonic band gap cavities embedded in a plasmonic gap structure - zero modal volume," LEOS Annual Meeting, Australia (paper TuZ5) (2005).
  9. H. T. Miyazaki0 and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett 96, 097401 (2006). [CrossRef]
  10. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultra small mode volumes in Dielectric Optical Microcavities," Phys. Rev. Lett. 95, 143901 (2005). [CrossRef] [PubMed]
  11. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  12. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556 (1991). [CrossRef]
  13. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 335186 (1986). [CrossRef]
  14. J. A. Kong, Electromagnetic Waves - Progress In Electromagnetics Research 10, (EMW, Cambridge, 1995).
  15. L. C. Andreani, G. Panzarini, and J. M. Ge´rard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited