OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2622–2653

The design and simulated performance of a coated nano-particle laser

Joshua A. Gordon and Richard W. Ziolkowski  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2622-2653 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of a concentric nanometer-sized spherical shell comprised of an (active) 3-level gain medium core and a surrounding plasmonic metal shell are investigated. Current research in optical metamaterials has demonstrated that including lossless plasmonic materials to achieve a negative permittivity in a nano-sized coated spherical particle can lead to novel optical properties such as resonant scattering as well as transparency or invisibility. However, in practice, plasmonic materials have high losses at optical frequencies. It is observed that with the introduction of active materials, the intrinsic absorption in the plasmonic shell can be overcome and new optical properties can be observed in the scattering and absorption cross-sections of these coated nano-sized spherical shell particles. In addition, a “super” resonance is observed with a magnitude that is 103 greater than that for a tuned, resonant passive nano-sized coated spherical shell. This observation suggests the possibility of realizing a highly sub-wavelength laser with dimensions more than an order of magnitude below the traditional half-wavelength cavity length criteria. The operating characteristics of this coated nano-particle (CNP) laser are obtained numerically for a variety of configurations.

© 2007 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(290.4020) Scattering : Mie theory

ToC Category:
Optics at Surfaces

Original Manuscript: December 21, 2006
Revised Manuscript: February 15, 2007
Manuscript Accepted: February 18, 2007
Published: March 5, 2007

Joshua A. Gordon and Richard W. Ziolkowski, "The design and simulated performance of a coated nano-particle laser," Opt. Express 15, 2622-2653 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Engheta and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microwave Theory Tech. 53, 1535 (2005). [CrossRef]
  2. V. G. Veselago, "The elctrodynamics of substances with simulataneously negative values of ε and μ," Sov. Phys. Uspekhi 10, 509 (1968). [CrossRef]
  3. A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557 (2006). [CrossRef] [PubMed]
  4. R. W. Ziolkowski, "Metamaterial-based antennas: Research and developments," IEICE Trans. Electron. E89-C, 1267 (2006). [CrossRef]
  5. A. Alù and N. Engheta, "Achieving transparency with plasmonic and metamaterials coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977 (2006). [CrossRef] [PubMed]
  8. Ulf Leonhardt, "Optical conformal mapping," Science 312, 1777 (2006). [PubMed]
  9. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027 (2006). [CrossRef]
  10. R. D. Averitt, S. L. Westcott, and N. J Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Am. B. 16, 1824 (1999). [CrossRef]
  11. A. Alù and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticels formed by pairs of concentric double-negative, single-negative, and/or double negative-positive metamaterials," J. Appl. Phys. 97, 094310 (2005). [CrossRef]
  12. R. W. Ziolkowski and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans Antennas Propag. 51, 2626 (2003). [CrossRef]
  13. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev and V. M. Shalaev, "Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium," Opt. Lett. 31, 3022 (2006). [CrossRef] [PubMed]
  14. I. Avrutsky, "Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain," Phys. Rev. B 70, 155416 (2004). [CrossRef]
  15. N. M. Lawandy, "Localized surface plasmon singularities in amplifying media," Appl. Phys. Lett. 85, 5040 (2004). [CrossRef]
  16. N. M. Lawandy, "Nano-particle plasmonics in active media," in Complex Mediums VI: Light and Complexity, edited by M. W. McCall, G. Dewar, and M. A. Noginov, Proc. SPIE 5924, 5924OG (2005). [CrossRef]
  17. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  18. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005). [CrossRef]
  19. K. Okamoto, S. Vyawahare, and A. Scherer, "Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals," J. Opt. Soc. Am. B 23, 1674 (2006). [CrossRef]
  20. A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242 (1951). [CrossRef]
  21. M. Kerker and C. G. Blatchford, "Elastic scattering and absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and dielectric region," Phys. Rev. B 26, 4052 (1982). [CrossRef]
  22. S. Arslanagic, R. W. Ziolkowski, and O. Breinbjerg, "Hertzian dipole excitation of higher order resonant modes in electrically small nested metamaterial shells: Source and scattering results," in Proceedings of the IV International Workshop on Electromagnetic Wave Scattering - EWS, (Gebze Institute of Technology, Gebze, Turkey, 2006) pp 8.9-8.14.
  23. R. W. Ziolkowski and A. D. Kipple, "Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells," Phys. Rev. E 72, 036602 (2005). [CrossRef]
  24. R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans Antennas Propag. 54, 2113 (2006). [CrossRef]
  25. A. Erentok and R. W. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans Antennas Propag. (to be published).
  26. A. W. H. Lin, N. J. Halas, and R. A. Drezek, "Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells," J. Biomed. Opt. 10, 064035 (2005) [CrossRef]
  27. L. R. Hirsch and A. M. Gobin, "Metal nanoshells," Annals of Biomedical Engineering 34, 15 (2006).
  28. J. B. Jackson and N. J. Halas, "Silver nanoshells: variations in morphologies and optical properties," J. Phys. Chem. B 105, 2743 (2001). [CrossRef]
  29. N. K. Grady, N. J. Halas, and P. Norlander, "Influence of dielectric function properties on the optical response of plasmonic resonant metallic nanoparticles," Chem. Phys. Lett. 399, 167 (2004). [CrossRef]
  30. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).
  31. P.B. Johnson and R.W. Christy, "Optical constants of the nobel metals," Phys. Rev. B 6,4370 (1972). [CrossRef]
  32. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976).
  33. M. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers, 2nd ed. (Marcel Dekker, Inc., New York, 1993).
  34. M. J. Weber, Handbook of Laser Wavelengths (CRC Press LLC, 1999).
  35. E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fiber amplifiers," J. Lightwave Technol. 8, 1517 (1990). [CrossRef]
  36. E. Desurvire, Erbium Doped-fiber Amplifiers (John Wiley and Sons, New York, 1994).
  37. A. J. Kenyon, C. E. Chryssou, C. W. Pitt, T. Shimizu-Iwayama, D. E. Hole, N. Sharma and C. J. Humphreys, "Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms," J. Appl. Phys. 91, 367 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited