OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2654–2668

Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band

Kazuya Sasaki, Shailendra K. Varshney, Keisuke Wada, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2654-2668 (2007)
http://dx.doi.org/10.1364/OE.15.002654


View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper focuses on the optimization of pump spectra to achieve low Raman gain ripples over C-band in ultra-low loss photonic crystal fiber (PCF) and dispersion compensating PCFs (DCPCFs). Genetic algorithm (GA), a multivariate stochastic optimization algorithm, is applied to optimize the pump powers and the wavelengths for the aforesaid fiber designs. In addition, the GA integrated with full-vectorial finite element method with curvilinear edge/nodal elements is used to optimize the structural parameters of DCPCF. The optimized DCPCF provides broadband dispersion compensation over C-band with low negative dispersion coefficient of -530 ps/nm/km at 1550 nm, which is five times larger than the conventional dispersion compensating fibers with nearly equal effective mode area (21.7 μm2). A peak gain of 8.4 dB with ±0.21 dB gain ripple is achieved for a 2.73 km long DCPCF module when three optimized pumps are used in the backward direction. The lowest gain ripple of ±0.36 dB is attained for a 10 km long ultra-low loss PCF with three backward pumps. Sensitivity analysis has been performed and it is found that within the experimental fabrication tolerances of ±2%, the absolute magnitude of dispersion may vary by ±16%, while the Raman gain may change by ±7%. Through tolerance study, it is examined that the ring core’s hole-size is more sensitive to the structural deformations.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: January 2, 2007
Revised Manuscript: January 31, 2007
Manuscript Accepted: February 20, 2007
Published: March 5, 2007

Citation
Kazuya Sasaki, Shailendra K. Varshney, Keisuke Wada, Kunimasa Saitoh, and Masanori Koshiba, "Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band," Opt. Express 15, 2654-2668 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2654


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Headly and G. P. Agarwal, Raman Amplification in Fiber Optical Communication Systems, (Academic Press, New York, 2004).
  2. M. N. Islam, Raman Amplification for Telecommunications 1, (Springer, 2003).
  3. Y. Emori, Y. Akasaka, and S. Namiki, "Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes," Electron. Lett. 34, 2145-2146 (1998). [CrossRef]
  4. M. Achtenhagen, T. G. Chang, and B. Nyman, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001). [CrossRef]
  5. V. E. Perlin and H. G. Winful, "Optimal design of flat-gain wide-band fiber Raman amplifiers," J. Lightwave Technol. 20, 250-254 (2002). [CrossRef]
  6. S. Cui, J. Liu and X. Ma, "A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 16, 2451-2453 (2004). [CrossRef]
  7. K. Thyagarajan and C. Kakkar, "Novel fiber design for flat gain Raman amplification using single pump and dispersion compensation in S band," J. Lightwave Technol. 22, 2279-2286 (2004). [CrossRef]
  8. T. J. Ellingham, L. M. Gleeson, and N. J. Doran, "Enhanced Raman amplifier performance using nonlinear pump broadening," in proceedings of IEEE European Conference on Optical Communication (IEEE, 2002), pp. 1-2.
  9. T. J. Ellingham, J. D. Ania-Castanin, S. K. Turitsyn, A. Pustovskikh, S. Kobtesev, and M. P Fedoruk, "Dual pump Raman amplification with increased flatness using modulation instability," Opt. Express 13, 1079-1084 (2005). [CrossRef] [PubMed]
  10. S. Martin Lopez, M. Gonzalez-Herralez, P. Corredera, M. L. Hernanz, and A. Carrasco, "Gain-flattening of fiber Raman amplifiers using non-linear pump spectral broadening," Opt. Commun. 242, 463-469 (2004). [CrossRef]
  11. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  12. N. A. Moretensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large mode area endlessly single mode photonic crystal fibers," Opt. Lett. 28, 393-395 (2003). [CrossRef]
  13. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, (Kulwer Academic Publishers 2003). [CrossRef]
  14. K. Saitoh and M. Koshiba, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  15. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, "Holey optical fibers: an efficient modal model," J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  16. R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave Opt. Technol. Lett. 37, 129-132 (2003). [CrossRef]
  17. F. Gérome, J. L. Auguste, and J. M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004). [CrossRef] [PubMed]
  18. M. Fuochi, F. Poli, A. Cucinotta, and L. Vincetti, "Study of Raman amplification properties in triangular photonic crystal fibers," J. Lightwave Technol. 21, 2247-2254 (2003). [CrossRef]
  19. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 22, 1707-1713 (2004). [CrossRef]
  20. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002). [CrossRef]
  21. C. J. S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 39, 424-425 (2003). [CrossRef]
  22. S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel fiber design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2065 (2005). [CrossRef]
  23. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005). [CrossRef] [PubMed]
  24. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14, 3528-3540, (2006). [CrossRef] [PubMed]
  25. F. Poli, L. Rosa, M. Bottacini, M. Foroni, A. Cucinotta, and S. Selleri, "Multipump flattened-gain Raman amplifiers based on photonic crystal fibers," IEEE Photon. Technol. Lett. 17, 2556-2558 (2005). [CrossRef]
  26. The GA toolbox, MATLAB 7.0, www.mathworks.com
  27. K. Tajima J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-10 (2004). [CrossRef]
  28. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  29. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006). [CrossRef] [PubMed]
  30. L.G. Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, "Dispersion compensating fibers," J. Lightwave Technol. 23, 3566-3579 (2005). [CrossRef]
  31. J. Bromage, K. Rottwitt, and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles," IEEE Photon. Technol. Lett. 14, 24-26 (2002). [CrossRef]
  32. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, (Springer-Verlag, New York, 1992).
  33. X. Liu and Y. Li, "Efficient algorithm and optimization for broadband Raman amplifiers," Opt. Express 12, 564-573 (2004). [CrossRef] [PubMed]
  34. The numerical data of Raman gain efficiency for conventional dispersion compensating fibers was provided by Furukawa Elect. Co. (Ltd.).
  35. http://www.ofs.dk/DCRA_note_0103.pdf
  36. S. G. Leon-Saval, T. A. Birks, N. Y. Joy, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1634 (2005). [CrossRef] [PubMed]
  37. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Control of dispersion in photonic crystal fibers," J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited