OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2691–2701

Polarization-sensitive color mixing in the wing of the Madagascan sunset moth

Shinya Yoshioka and Shuichi Kinoshita  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2691-2701 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that the wing scales of butterflies and moths have elaborated microstructures that cause various optical effects. structural colors occur when the microstructures have a size comparable with the wavelength of light. On the other hand, the wing scales of some species are structurally modified at a size much larger size than the light wavelength. Here we show for the Madagascan sunset moth that not only the microstructures but also the large-size modifications can play an important role in scale coloration. The wing of the sunset moth shows a striking iridescence that is caused by the air-cuticle multilayer structure inside the wing scales. Further, the scale itself is highly curved from its root to distal end. Owing to this strong curvature, a deep groove structure is formed between adjacent two rows of the regularly arranged scales. We find that this groove structure together with multilayer optical interference produces an unusual optical effect through an inter-scale reflection mechanism; the wing color changes depending on light polarization. A model is proposed that quantitatively describes this color change.

© 2007 Optical Society of America

OCIS Codes
(310.0310) Thin films : Thin films
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: November 21, 2006
Revised Manuscript: December 20, 2006
Manuscript Accepted: December 24, 2006
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Shinya Yoshioka and Shuichi Kinoshita, "Polarization-sensitive color mixing in the wing of the Madagascan sunset moth," Opt. Express 15, 2691-2701 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds, and moths," Chem. Rev. 99,1935-1961 (1999). [CrossRef]
  2. A. R. Parker, "515 million years of structural color," J. Opt. A: Pure Appl. Opt. 2,R15-R28 (2000). [CrossRef]
  3. P. Vukusic and J. R. Sambles, "Photonic structures in biology," Nature 424,852-855 (2003). [CrossRef] [PubMed]
  4. S. Kinoshita and S. Yoshioka, "Structural colors in Nature: the role of regularity and irregularity in the structure," ChemPhysChem 6,1442-1459 (2005). [CrossRef] [PubMed]
  5. H. Ghiradella, "Light and color on the wing: structural coors in butterflies and moths," Appl. Opt. 30, 3492-3500 (1991). [CrossRef] [PubMed]
  6. H. Ghiradella, "Hairs, bristles, and scales," in Microscopic anatomy of invertebrates, 11A: Insecta, M. Locke ed. (Wiley-Liss, New York, 1998), pp. 257-287.
  7. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, "Quantified interference and diffraction in single Morpho butterfly scales," Proc. R. Soc. Lond. B 266,1403-1411 (1999). [CrossRef]
  8. S. Kinoshita, S. Yoshioka, and K. Kawagoe, "Mechanisms of structural color in theMorpho butterfly: cooperation of regularity and irregularity in an iridescent scale," Proc. R. Soc. Lond. B 269,1417-1421 (2002). [CrossRef]
  9. S. Berthier, E. Charron, and J. Boulenguez, "Morphological structure and optical properties of the wings of Morphidae," Insect Science 13,145-157 (2006). [CrossRef]
  10. R. B. Morris, "Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak," J. Ent. (A) 49,149-154 (1975).
  11. L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J. -P. Vigneron, "Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair," Phys. Rev. E 67, 021907 (2003). [CrossRef]
  12. C. W. Mason, "Structural colors in insects. II," J. Phys. Chem. 31, 321-354 (1927). [CrossRef]
  13. W. Lippert and K. Gentil, "Uber lamellare Feinstrukturen bei den SchillerSchuppen der Schmetterlinge vom Urania- und Morpho- Typ," Z. Morph. Okol. Tiere 48, 115-122 (1959). [CrossRef]
  14. H. F. Nijhout, The development and evolution of butterfly wing patterns (Smithonian Institution Press, Washington, 1991).
  15. A. R. Parker, D. R. Mckenzie, and S. T. Ahyong, "A unique form of light reflector and the evolution of signaling in Ovalipes (Crustacea: Decapoda: Portunidae)," Proc. R. Soc. Lond. B 265, 861-867 (1998). [CrossRef]
  16. S. Yoshioka and S. Kinoshita, "Effect of macroscopic structure in iridescent color of the peacock feather," Forma 17, 169-181 (2002).
  17. S. Yoshioka and S. Kinoshita, "Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance," J. Opt. Soc. Am. A,  23, 134-141 (2006). [CrossRef]
  18. S. Yoshioka and S. Kinoshita, "Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly," Proc. R. Soc. Lond. B 271, 581-587 (2004). [CrossRef]
  19. P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Color mixing in scales of a butterfly," Nature 404, 457 (2000). [CrossRef] [PubMed]
  20. A. Sweeney, C. Jiggins, and S. Johnsen, "Polarized light as a butterfly mating signal," Nature 423, 31 (2003). [CrossRef] [PubMed]
  21. A. Kelber, C. Thunell, and K. Ariwaka, "Polarization-dependent color vision in Papilio butterflies," J. Exp. Biol. 204, 2469-2480 (2001). [PubMed]
  22. R. Hegedus and G. Horvath, "Polarizational colors could help polarization-dependent color vision systems to discriminate between shiny and matt surfaces, but cannot unambiguously code surface orientation," Vision Research 44, 2337-2348 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited