OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 2785–2790

Novel polarization-sensitive micropulse lidar measurement technique

Connor J. Flynna, Albert Mendozaa, Yunhui Zhengb, and Savyasachee Mathurb  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 2785-2790 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polarization-sensitive detection of elastic backscattered light is useful for detection of cloud phase and depolarizing aerosols. The U.S. Department of Energy’s Atmospheric Radiation Measurement Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques, which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio δ linear , the circular depolarization ratio δ circ , and this MPL depolarization ratio δ MPL .

© 2007 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(010.3640) Atmospheric and oceanic optics : Lidar
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: January 2, 2007
Revised Manuscript: February 21, 2007
Manuscript Accepted: February 26, 2007
Published: March 19, 2007

Connor J. Flynn, Albert Mendoza, Yunhui Zheng, and Savyasachee Mathur, "Novel polarization-sensitive micropulse lidar measurement technique," Opt. Express 15, 2785-2790 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. L. Stephens,  et al., "The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback," Am. Meteorol. Soc. 47, 1742-1753, (1990).
  2. G. L. Stephens,  et al., "The CLOUDSAT mission and the A-Train," Bull. Amer. Meteorol. Soc. 83, 1771-1790, (2002). [CrossRef]
  3. K. Sassen, "The polarization lidar technique for cloud research: A review and current assessment," Bull. Amer. Meteor. Soc. 72, 1848-1866 (1991). [CrossRef]
  4. G. P. Gobbi, "Polarization lidar returns from aerosols and thin clouds: a framework for the analysis," Appl. Opt. 37, 5505-5508 (1999). [CrossRef]
  5. J. D. Spinhirne, "Micro pulse lidar," IEEE Trans. Geosci. Remote Sens. 31, 48-55 (1993). [CrossRef]
  6. J. R. Campbell et al., "Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: instruments and data processing," J. Atmos. Ocean. Tech. 19, 431-442 (2002). [CrossRef]
  7. M. Del Guasta,  et al., " Use of polarimetric lidar for the study of oriented ice plates in clouds," Appl. Opt. 45, 4878-4887 (2006). [CrossRef] [PubMed]
  8. Y. X. Hu,  et al., "Discriminating between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study," J. Quant. Spectrosc. Radiat. Transf. 79-80, 757-764 (2003). [CrossRef]
  9. J. W. Hovenier et al., "Conditions for the elements of the scattering matrix," Astron. Astrophys. 157, 301-310 (1986).
  10. P. Yang,  et al., "Sensitivity of the backscattering Mueller matrix to particle shape and thermodynamic phase," Appl. Opt. 42, 4389-4395 (2003). [CrossRef] [PubMed]
  11. M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995). [CrossRef] [PubMed]
  12. J. Harrington and J. Verlinde, "Mixed-Phase Arctic Clouds Experiment (M-PACE)," http://www.meteo.psu.edu/~verlinde/sciencedoc.pdf
  13. E. W. Eloranta, "High Spectral Resolution Lidar" in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, K. Weitkamp, ed., (Springer-Verlag, New York, 2005).
  14. J. Biele,  et al., "Polarization lidar: Corrections of instrumental effects," Opt. Express 7, 427-435 (2000). [CrossRef] [PubMed]
  15. A. Behrendt and T. Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002). [PubMed]
  16. J. D. Houston and A. I. Carswell, "Four-component polarization measurement of lidar atmospheric scattering," Appl. Opt. 17, 614-620 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited