OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 2810–2821

Image formation in fluorescence coherence-gated imaging through scattering media

A. Bilenca, T. Lasser, A. Ozcan, R. A. Leitgeb, B. E. Bouma, and G. J. Tearney  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 2810-2821 (2007)
http://dx.doi.org/10.1364/OE.15.002810


View Full Text Article

Enhanced HTML    Acrobat PDF (4042 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, we have experimentally demonstrated a new form of cross-sectional, coherence-gated fluorescence imaging referred to as SD-FCT (’spectral-domain fluorescence coherence tomography‘). Imaging in SD-FCT is accomplished by spectrally detecting self-interference of the spontaneous emission of fluorophores, thereby providing depth-resolved information on the axial positions of fluorescent probes. Here, we present a theoretical investigation of the factors affecting the detected SD-FCT signal through scattering media. An imaging equation for SD-FCT is derived that includes the effects of defocusing, numerical-aperture, and the optical properties of the medium. A comparison between the optical sectioning capabilities of SD-FCT and confocal microscopy is also presented. Our results suggest that coherence gating in fluorescence imaging may provide an improved approach for depth-resolved imaging of fluorescently labeled samples; high axial resolution (a few microns) can be achieved with low numerical apertures (NA<0.09) while maintaining a large depth of field (a few hundreds of microns) in a relatively low scattering medium (6 mean free paths), whereas moderate NA’s can be used to enhance depth selectivity in more highly scattering biological samples.

© 2007 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(170.6960) Medical optics and biotechnology : Tomography
(260.2510) Physical optics : Fluorescence

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: December 4, 2006
Revised Manuscript: February 5, 2007
Manuscript Accepted: February 6, 2007
Published: March 19, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
A. Bilenca, T. Lasser, A. Ozcan, R. A. Leitgeb, B. E. Bouma, and G. J. Tearney, "Image formation in fluorescence coherence-gated imaging through scattering media," Opt. Express 15, 2810-2821 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2810


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, A. Knuettel, A. Gandjbakhche, and R. F. Bonner, "Optical characterization of dense tissues using low-coherence interferometry," Proc. SPIE 1889, 197-211 (1993). [CrossRef]
  3. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994). [CrossRef] [PubMed]
  4. M. Kempe and W. Rudolph, "Analysis of heterodyne and confocal microscopy for illumination with broad-bandwidth light," J. Mod. Opt. 43, 2189-2204 (1996). [CrossRef]
  5. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998). [CrossRef]
  6. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003). [CrossRef] [PubMed]
  7. C. Yang, "Molecular contrast optical coherence tomography: A review," Photochemistry and Photobiology,  81, 215-237 (2005).
  8. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, "Fluorescence coherence tomography," Opt. Express 14, 7134-7143 (2006). [CrossRef] [PubMed]
  9. S. Hell and E. H. K. Stelzer, "Properties of a 4Pi-confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  10. A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, M. S. Unlu, "Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference," IEEE J. Sel. Top. Quantum Electron. 9, 294-300 (2003). [CrossRef]
  11. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  12. M. Gu, Advanced optical imaging theory (Springer 1999).
  13. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  14. A. Bilenca, A. Desjardins, B. Bouma, and G. Tearney, "Multicanonical Monte-Carlo simulations of light propagation in biological media," Opt. Express 13, 9822-9833 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited