OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 2915–2920

A broadband high spectral brightness fiber-based two-photon source

J. Fan and A. Migdall  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 2915-2920 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (608 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



After characterizing the Raman scattering in a fused silica polarization-maintaining microstructure optical fiber, we built a fiber-based two-photon light source of high spectral brightness, broad spectral range, and very low noise background at room temperature. The resulting bright low-noise two-photon light can be used for a number of quantum information applications.

© 2007 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 2, 2007
Manuscript Accepted: February 11, 2007
Published: March 19, 2007

Jingyun Fan and Alan Migdall, "A broadband high spectral brightness fiber-based two-photon source," Opt. Express 15, 2915-2920 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Burnham, D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84 (1970). [CrossRef]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999). [CrossRef]
  3. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64, 023802 (2001). [CrossRef]
  4. Z. Zhao, Y. Chen, A. Zhang, T. Yang, H. J. Briegel, and J. W. Pan, "Experimental demonstration of five-photon entanglement and open-destination teleportation", Nature 430, 54 (2004). [CrossRef] [PubMed]
  5. L. J. Wang, C. K. Hong, and S. R. Friberg, "Generation of correlated photons via four-wave mixing in optical fibers," J. Opt. B: Quantum and Semiclass. Opt. 3, 346 (2001). [CrossRef]
  6. J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367 (2001). [CrossRef]
  7. M. Fiorentino, P. L. Voss, JayE. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communication," IEEE Photon. Technol. Lett. 14, 983 (2002). [CrossRef]
  8. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  9. X. Li, P. Voss, J. E. Sharping, P. Kumar, "Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  10. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13,534-544 (2005). [CrossRef] [PubMed]
  11. J. Fan, A. Dogariu, L. J. Wang, "Generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 1530 (2005). [CrossRef] [PubMed]
  12. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett.,  30, 3368 (2005). [CrossRef]
  13. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers", Opt. Lett. 31, 1286-1288 (2006). [CrossRef] [PubMed]
  14. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905 (2006). [CrossRef] [PubMed]
  15. G. P. Agrawal: Nonlinear Fiber Optics, 2nd ed. (New York, Academic ,1995).
  16. P. L. Voss and P. Kumar, "Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters," J. Opt. B: Quantum Semiclass. Opt. 6, S762-S770 (2004). [CrossRef]
  17. J. C. Knight, T. A. Birks, and P. St. J. Russell, D. M. Atkin, "Endlessly single-mode photonic crystal fibers," Opt. Lett. 21, 1547 (1996). [CrossRef] [PubMed]
  18. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961 (1997). [CrossRef] [PubMed]
  19. NL-PM-740, http://www.thorlabs.com.
  20. R. H. Stolen, and M. A. Bosch, "Low frequency and low-temperature Raman scattering in silica fibers," Phys. Rev. Lett. 22, 805 (1982). [CrossRef]
  21. E. Desurvire, M. J. E. Digonnet, and H. J. Shaw, "Theory and implementation of a Raman active delay line," J. Lightwave Technol. 4, 427 (1986). [CrossRef]
  22. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "temperature-dependent gain and noise in fiber Raman amplifiers," Opt. Lett. 24, 1823 (1999). [CrossRef]
  23. F. Koch, S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, "Broadband Raman gain characterization in various optical fibers," Electron. Lett. 37, 1437 (2001). [CrossRef]
  24. S. Tanzilli, F. D. Riedmatten, W. Tittle, H. Zbinden, P. Baldi, M. D., Micheli, D. B. Ostrowsky, N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Elec. Lett. 37, 26 (2001). [CrossRef]
  25. S. J. Mason, M. A. Albota, F. Konig, and F. N. C. Wong, "Efficient generation of tunable photon pairs at 0.8 and 1.6 μm," Opt. Lett. 27, 2115 (2002). [CrossRef]
  26. F. Konig, E. J. Mason, F. N. C. Wong, and M. A. Albota, "Efficient spectrally bright source of polarization-entangled photons," Phys. Rev. A 71, 033805 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited