OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 2947–2952

High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 2947-2952 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-conversion-efficiency widely-tunable all-fiber optical parametric oscillator is described. It is based on modulation instability in the normal dispersion regime near the fiber’s zero-dispersion wavelength. A 40 m long dispersion-shifted fiber is used in a synchronously pumped ring cavity. We demonstrate continuous sideband tuning from 1300 to 1500 nm and 1600 to 1860 nm by tuning the pump wavelength between 1532 and 1556 nm. Internal conversion efficiencies of up to 40% are achieved.

© 2007 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 14, 2007
Manuscript Accepted: February 16, 2007
Published: March 19, 2007

G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express 15, 2947-2952 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron. QE-16, 694-697 (1980). [CrossRef]
  2. M. Nakazawa, K. Suzuki, and H. A. Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A 38, 5193-5196 (1988). [CrossRef] [PubMed]
  3. K. Suzuki, M. Nakazawa, and H. A. Haus, "Parametric soliton laser," Opt. Lett. 14, 320-322 (1989). [CrossRef] [PubMed]
  4. D. K. Serkland and P. Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett. 24, 92-94 (1999). [CrossRef]
  5. S. Coen and M. Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett. 26, 39-41 (2001). [CrossRef]
  6. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett. 27, 1439-1441 (2002). [CrossRef]
  7. S. Saito, M. Kishi, and M. Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett. 39, 86-88 (2003). [CrossRef]
  8. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002) [CrossRef]
  9. J. Lasri, P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett. 15, 1058-1060 (2003). [CrossRef]
  10. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett. 29, 983-985 (2004). [CrossRef] [PubMed]
  11. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005). [CrossRef] [PubMed]
  12. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers," Opt. Express 14, 9491-9501 (2006). [CrossRef] [PubMed]
  13. C. Lin, W. A. Reed, A. D. Pearson, and H. T. Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett. 6, 493-495 (1981). [CrossRef] [PubMed]
  14. S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003). [CrossRef]
  15. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004). [CrossRef]
  16. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003). [CrossRef] [PubMed]
  17. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett. 30, 762-764 (2005). [CrossRef] [PubMed]
  18. G. Cappellini and S. Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991). [CrossRef]
  19. M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett. 26, 620-622 (2001). [CrossRef]
  20. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited