OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3053–3066

Approximations for the arctangent function in efficient fringe pattern analysis

Hongwei Guo and Guoqing Liu  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 3053-3066 (2007)
http://dx.doi.org/10.1364/OE.15.003053


View Full Text Article

Enhanced HTML    Acrobat PDF (1785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In fringe pattern analyses, the computational burden of implementing the arctangent function over an entire phase map is not trivial, hindering it from being used in real-time measurements. For overcoming this problem, this paper presents a general method for approximating the arctangent function. The domain of the arctangent function is split into a sequence of intervals. For each interval, approximation polynomials are determined in the maximum-norm sense. By applying these polynomials instead of the standard arctangent function to the fringe analyses, the efficiencies of phase evaluations are improved significantly. The accuracies and simplicities of the approximations have been analyzed numerically, and their validities have also been verified by using experimental results.

© 2007 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.5070) Image processing : Phase retrieval
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Image Processing

History
Original Manuscript: November 21, 2006
Revised Manuscript: March 7, 2007
Manuscript Accepted: March 7, 2007
Published: March 19, 2007

Citation
Hongwei Guo and Guoqing Liu, "Approximations for the arctangent function in efficient fringe pattern analysis," Opt. Express 15, 3053-3066 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3053


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]
  2. M. Takeda and K. Mutoh, "Fourier transform profilometry for the automatic measurement of 3-D object shapes." Appl. Opt. 22, 3977-3982 (1983). [CrossRef] [PubMed]
  3. O. A. Skydan, M. J. Lalor, and D. R. Burton, "Technique for phase measurement and surface reconstruction by use of colored structured light," Appl. Opt. 41, 6104-6117 (2002). [CrossRef] [PubMed]
  4. C. J. Tay, C. Quan, H. M. Shang, T. Wu, and S. Wang, "New method for measuring dynamic response of small components by fringe projection," Opt. Eng. 42, 1715-1720 (2003). [CrossRef]
  5. Q. Zhang and X. Su, "High-speed optical measurement for the drumhead vibration," Opt. Express 13, 3110-3116 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-3110. [CrossRef] [PubMed]
  6. Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, "Optical 3-D shape and deformation measurement of rotating blades using stroboscopic structured illumination," Opt. Eng. 44, 113601 (2005). [CrossRef]
  7. M. Takeda, Q. Gu, M. Kinoshita, H. Takai, and Y. Takahashi, "Frequency-multiplex Fourier-transform profilometry: a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations," App. Opt. 36, 5347-5354 (1997). [CrossRef]
  8. W-H. Su and H. Liu, "Calibration-based two-frequency projected fringe profilometry: a robust, accurate, and single-shot measurement for objects with large depth discontinuities," Opt. Express 14, 9178-9187 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9178. [CrossRef] [PubMed]
  9. M. A. Herráez, D. R. Burton, and M. J. Lalor, "Accelerating fast Fourier transform and filtering operations in Fourier fringe analysis for accurate measurement of three-dimensional surfaces," Opt. Lasers Eng. 31, 135-145 (1999). [CrossRef]
  10. Y. Ichioka and M. Inuiya, "Direct Phase Detecting System," Appl. Opt. 11, 1507-1514 (1972). [CrossRef] [PubMed]
  11. K. H. Womack, "Interferometric phase measurement using spatial synchronous detection," Opt. Eng. 23, 391-395 (1984).
  12. S. Tang and Y. Y. Hung, "Fast profilometer for the automatic measurement of 3-D object shapes," Appl. Opt. 29, 3012-3018 (1990). [CrossRef] [PubMed]
  13. L. Mertz, "Real-time fringe-pattern analysis," Appl. Opt. 22, 1535-1539 (1983). [CrossRef] [PubMed]
  14. W. W. Macy, "Two-dimensional fringe-pattern analysis," Appl. Opt. 22, 3898-3901 (1983). [CrossRef] [PubMed]
  15. D. C. Williams, N. S. Nassar, J. E. Banyard, and M. S. Virdee, "Digital phase-step interferometry: a simplified approach," Opt. Laser Tech. 23, 147-150 (1991). [CrossRef]
  16. P. H. Chan and P. J. Bryanston-Cross, "Spatial phase stepping method of fringe-pattern analysis," Opt. Lasers Eng. 23, 343-354 (1995). [CrossRef]
  17. Y. Arai, S. Yokozeki, K. Shiraki, and T. Yamada, "High precision two-dimensional spatial fringe analysis method," J. Mod. Opt. 44, 739-751 (1997). [CrossRef]
  18. J. Kato, I. Yamaguchi, T. Nakamura, and S. Kuwashima, "Video-rate fringe analyzer based on phase-shifting electronic moiré patterns," Appl. Opt. 36, 8403-8412 (1997). [CrossRef]
  19. M. Kujawinska, "Spatial phase measurement methods," in Interferogram Analysis: Digital Fringe Pattern Measurement, D. W. Robinson and G. Reid, eds. (IOP, Bristol, UK, 1993), pp.141-193.
  20. Y. Morimoto and M. Fujigaki. "Real-time phase distribution analysis of fringe pattern," in International Conference on Applied Optical Metrology, P. K. Rastogi, and F. Gyímesi eds., Proc. SPIE,  3407, 34-39 (1998). [CrossRef]
  21. K. L. Baker and E. A. Stappaerts, "A single-shot pixellated phase-shifting interferometer utilizing a liquid-crystal spatial light modulator," Opt. Lett. 31, 733-735 (2006). [CrossRef] [PubMed]
  22. P. S. Huang, Q. Hu, and F-P. Chiang, "Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring," Opt. Eng. 38, 1065-1071 (1999). [CrossRef]
  23. C. Guan, L. G. Hassebrook, and D. L. Lau "Composite structured light pattern for three-dimensional video," Opt. Express 11, 406-417 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-5-406. [CrossRef] [PubMed]
  24. C. R. Coggrave and J. M. Huntley, "High-speed surface profilometer based on a spatial light modulator and pipeline image processor," Opt. Eng. 38, 1573-1581 (1999). [CrossRef]
  25. P. S. Huang, C. P. Zhang, and F. P. Chiang, "High-speed 3-D shape measurement based on digital fringe projection," Opt. Eng. 42, 163-168 (2003). [CrossRef]
  26. S. Zhang and S-T. Yau, "High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method," Opt. Express 14, 2644-2649 (2006), http://www.opticsinfobase.org/abstract.cfm? URI=oe-14-7-2644. [CrossRef] [PubMed]
  27. S. Zhang, D. Royer, and S-T Yau, "GPU-assisted high-resolution, real-time 3-D shape measurement," Opt. Express,  14, 9120-9129 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9120. [CrossRef] [PubMed]
  28. M. S. Mermelstein, D. L. Feldhun, and L. G. Shirley, "Video-rate surface profiling with acousto-optic accordion fringe interferometry," Opt. Eng. 39, 106-113 (2000). [CrossRef]
  29. C. Quan, C. J. Tay, X. Kang, X. Y. He, and H. M. Shang, "Shape measurement by use of liquid-crystal display, fringe projection with two-step phase-shifting," Appl. Opt. 42, 2329-2335 (2003). [CrossRef] [PubMed]
  30. S. Almazán-Cuéllar and D. Malacara-Hernández, "Two-step phase-shifting algorithm," Opt. Eng. 42, 3524-3531 (2003). [CrossRef]
  31. P. L. Wizinowich, "Phase shifting interferometry in the presence of vibration: a new algorithm and system," Appl. Opt. 29, 3271-3279 (1990). [CrossRef] [PubMed]
  32. H. A. Vrooman and A. A. M. Maas, "Image processing algorithms for the analysis of phase-shifted speckle interference patterns," Appl. Opt. 30, 1636-1641 (1991). [CrossRef] [PubMed]
  33. Z. Gao, S. Zhou, and Y. Hu, "High-speed fringe analysis by using stair-shaped virtual grating demodulation," Opt. Lasers Eng. 28, 411-422 (1997). [CrossRef]
  34. P. S. Huang and S. Zhang, "Fast three-step phase shifting algorithm," Appl. Opt. 45, 5086-5091 (2006). [CrossRef] [PubMed]
  35. R. Capelli, "Fast approximation to the arctangent," in Graphics Gems II, J. Arvo, ed. (AP Professional, Boston, USA, 1995), pp. 389-391.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited