OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3085–3092

Ultrahigh-resolution optical coherence tomography at 1.15 μm using photonic crystal fiber with no zero-dispersion wavelengths

Hui Wang, Christine P. Fleming, and Andrew M. Rollins  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 3085-3092 (2007)
http://dx.doi.org/10.1364/OE.15.003085


View Full Text Article

Enhanced HTML    Acrobat PDF (7810 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a broad-band continuum light source with high power, low noise and a smooth spectrum centered at 1.15 μm for ultrahigh-resolution optical coherence tomography (OCT). The continuum is generated by self-phase modulation using a compact 1.059 μm femtosecond laser pumping a novel photonic crystal fiber, which has a convex dispersion profile with no zero dispersion wavelengths. The emission spectrum is red-shifted from the pump wavelength, ranges from 800 to 1300 nm and results in a measured axial resolution of ~2.8 μm in air. We demonstrate ultrahigh-resolution OCT imaging of biological tissue using this light source. The results suggest PCF with this type of dispersion profile is advantageous for generating SC as a light source for ultrahigh-resolution OCT.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(230.6080) Optical devices : Sources

ToC Category:
Imaging Systems

History
Original Manuscript: December 22, 2006
Revised Manuscript: February 27, 2007
Manuscript Accepted: March 1, 2007
Published: March 19, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Hui Wang, Christine P. Fleming, and Andrew M. Rollins, "Ultrahigh-resolution optical coherence tomography at 1.15 μm using photonic crystal fiber with no zero-dispersion wavelengths," Opt. Express 15, 3085-3092 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47 (2004). [CrossRef] [PubMed]
  2. A. W. Sainter, T. A. King, and M. R. Dickinson, "Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography," J. Biomed. Opt. 9, 193-199 (2004). [CrossRef] [PubMed]
  3. T. Hillman and D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1860 [CrossRef] [PubMed]
  4. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  5. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2- m m axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003). [CrossRef] [PubMed]
  6. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Büting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11,3290-3297 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3290 [CrossRef] [PubMed]
  7. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber," Opt.Lett. 28,182-184 (2003). [CrossRef] [PubMed]
  8. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12,3532-3542 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3532 [CrossRef] [PubMed]
  9. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30,1171-1173 (2005). [CrossRef] [PubMed]
  10. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Express 14,1596-1603 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1596 [CrossRef] [PubMed]
  11. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, (1996). [CrossRef] [PubMed]
  12. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26,608-610 (2001). [CrossRef]
  13. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10,1083-1098 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-20-1083 [PubMed]
  14. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90,113904-113901 (2003). [CrossRef] [PubMed]
  15. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28,944-946 (2003). [CrossRef] [PubMed]
  16. Y. Wang, I. Tomov, J. S. Nelson, Z. Chen, H. Lim, and F. Wise, "Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography," J. Opt. Soc. Am. A 22,1492-1499 (2005). [CrossRef]
  17. H. Wang and A. M. Rollins, "Optimization of dual band continuum light source for ultrahigh resolution optical coherence tomography," App. Opt. (in press).
  18. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14,1145-1160 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145 [CrossRef]
  19. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, "Diode-pumped Yb:Sr_3 Y(BO_3) _3 femtosecond laser," Opt. Lett. 27, 197-199 (2002) [CrossRef]
  20. H. Lim, F. Ö. Ilday, and F. W. Wise, "Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser," Opt. Lett. 28, 660-662 (2003) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig.3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited