OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3156–3168

Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis

Damian Goldring, Uriel Levy, and David Mendlovic  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3156-3168 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a novel design of a hybrid micro-ring resonator and photonic crystal device. The proposed device is based on a micro-ring resonator with the addition of a series of periodic defects that are introduced to the microring. When the wavelength of operation approaches the band-gap of the periodic structure, the modal dispersion is significantly increased. The huge dispersion leads to narrowing of the spectral linewidth of the resonator. We predict an order of magnitude linewidth narrowing for a microring radius of the order of 10μm. The proposed hybrid device is analyzed theoretically and numerically using finite-elements calculations and finite-difference-time-domain calculations. We also present as well as the design and analysis of add-drop and notch filters based on the highly dispersive ring resonator.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Integrated Optics

Original Manuscript: November 27, 2006
Revised Manuscript: January 24, 2007
Manuscript Accepted: January 24, 2007
Published: March 19, 2007

Damian Goldring, Uriel Levy, and David Mendlovic, "Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis," Opt. Express 15, 3156-3168 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  3. J. S. Forsei, P. R. Villeneuve, J. Ferrara, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L.C Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997). [CrossRef]
  4. A. A. Savchenkov, A. B. Matsko, and L. Maleki, "White light whispering gallery mode resonators," Opt. Lett. 31, 92-94 (2006). [CrossRef] [PubMed]
  5. G. Muller, M. Muller, A. Wicht, R. H. Rinkleff, and K. Danzmann, "Optical resonator with steep internal dispersion," Phys. Rev. A 56, 2385-2389 (1997). [CrossRef]
  6. M. Soljacic, E. Lidorikis, L. Vestergaard Hau, J. D. Joannopoulus, "Enhancement of microcavities lifetime using highly dispersive materials," Phys. Rev. E. 71, 026602 (2005). [CrossRef]
  7. U. Levy, and Y. Fainman, "Dispersion properties of inhomogeneous nanostructures," J. Opt. Soc. Am. A 21, 881-889 (2004). [CrossRef]
  8. S. Mookherjea, "Dispersion characteristics of coupled-resonator optical waveguide," Opt. Lett. 30, 2406-2408 (2005). [CrossRef] [PubMed]
  9. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  10. S. Chang, H. Cao, S. Ho, "Cavity formation and light propagation in partially ordered and completely random one-dimensional systems," IEEE J. Quantum Electron. 39, 364-374 (2003). [CrossRef]
  11. J. Scheuer and A. Yariv, "Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators"IEEE J. Quantum Electron. 39, 1555-1562 (2003). [CrossRef]
  12. All the calculations in this paper are in 2D. Since we examine only channel waveguides (as opposed to 2D PhC, for example) the 2D approximation gives satisfying and qualitative and sometimes even quantitative results.
  13. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  14. C. Manolatu, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulus, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  15. Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda, "Two-dimensional photonic-crystal-slab channel drop filter with flat-top response," Opt. Express 13, 2512-2530 (2005) [CrossRef] [PubMed]
  16. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  17. J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901 (2006). [CrossRef] [PubMed]
  18. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, "Optical gyroscope with whispering gallery mode optical cavities," Opt. Commun. 233, 107-112 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited