OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3169–3176

Photonic-crystal waveguide biosensor

Nina Skivesen, Amølie Têtu, Martin Kristensen, Jørgen Kjems, Lars H. Frandsen, and Peter I. Borel  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3169-3176 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index sensing range extending from air to high viscous fluids is presented.

© 2007 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors
(230.0230) Optical devices : Optical devices

ToC Category:
Integrated Optics

Original Manuscript: November 22, 2006
Revised Manuscript: March 2, 2007
Manuscript Accepted: March 6, 2007
Published: March 19, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Nina Skivesen, Amélie Têtu, Martin Kristensen, Jørgen Kjems, Lars H. Frandsen, and Peter I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Sepulveda, A. Calle, L. M. Lechuga, and G. Armelles, "Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor," Opt. Lett. 31, 1085-1087 (2006). [CrossRef] [PubMed]
  2. BIOS-1, ASI AG, Zrich, Switzerland; IAsys, Affinity Sensors, Cambridge, UK; Analight Bio200, Farfield Sensors, Ltd., Manchester, UK; OWLS 110, Micro Vacuum, Budapest, Hungary.
  3. G. A. Robinson, "Optical immunosensing systems - meeting the market needs," Biosens. Bioelectron. 6, 183-191 (1991). [CrossRef] [PubMed]
  4. C. Nylander, B. Liedberg, and T. Lind, "Gas-detection by means of surface-plasmon resonance," Sens. Actuators 3, 79-88 (1982). [CrossRef]
  5. J. Homola, S. S. Yee, and G. Gauglitz, "Surface Plasmon resonance sensors: review," Sens. Acuators B 54, 3-15 (1999). [CrossRef]
  6. J. S. Yuk, S. Yi, H. G. Lee, H. J. Lee, Y. Kim, and K. Ha, "Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips," Sens. Actuators B 94, 161-164 (2003). [CrossRef]
  7. F. Hook, J. Vorors, M. Rodahl, R. Kurrat, P. Boni, J. J. Ramsden, M. Textor, N. D. Spencer, P. Tengvall, J. Gold, and B. Kasemo "A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation," Colloids and surfaces B 24, 155-170 (2002). [CrossRef]
  8. R. Kurrat, B. Walivaara, A. Marti, M. Textor, P. Tengvall, J. J. Ramsden and N. D. Spencer, "Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and Ellipsometry," Colloids and Surfaces B 11, 187-201 (1998). [CrossRef]
  9. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004). [CrossRef]
  10. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  11. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005). [CrossRef] [PubMed]
  12. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2003). [CrossRef]
  13. L. W. Mirkarimi, S. Zlatanovic, M. S. Sigalas, M. A. Bynum, K. Robotti, E. Chow, and A. Grot, "Toward single molecule detection with photonic crystal microcavity biosensor," Presented at LEOS summer topical meetings, Quebec, Canada (2006).
  14. W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, and R. Baets, "Large-scale production techniques for photonic nanostructures (invited)," Proceedings of SPIE (2003).
  15. B. Cunningham, P. Li, B. Lin, and J. Pepper, "Colorimetric resonant reflection as a direct biochemical assay technique," Sens. Actuators B 81, 316-328 (2002). [CrossRef]
  16. L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, "Self-referenced assay method for photonic crystal biosensors: Application to small molecule analytes," Sens. Actuators B 120, 392-398 (2007). [CrossRef]
  17. O. Levi, W. Suh, M. M. Lee, J. Zhang, S. R. J. Brueck, S. Fan, and J. S. Harris, "Guided-Resonance in Photonic crystal slabs for biosensing applications," presented at CLEO/QELS Technical Conference. Long Beach, USA, 23 May 2006.
  18. J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. C. Yu, "Fluid detection with photonic crystal-based multi channel waveguides," Appl. Phys. Lett. 82, 1143-1145 (2003). [CrossRef]
  19. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  20. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdre, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006). [CrossRef] [PubMed]
  21. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8218-8222 (2000). [CrossRef]
  22. P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, Y. X. Zhuang, M. Kristensen, and H. M. H. Chong, "Efficient propagation of TM polarized light in photonic crystal components exhibiting band gaps for TE polarized light," Opt. Express 11, 1757-1762 (2003). [CrossRef] [PubMed]
  23. A. Lavrinenko, P. . Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. M. H. Chong, "Comprehensive FDTD modelling of photonic crystal waveguide components," Opt. Express 12, 234-248 (2004). [CrossRef] [PubMed]
  24. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, and M. Kristensen, "Near.field characterization of low-loss photonic crystal waveguides," Phys. Rev. B 72, 035118 (2005). [CrossRef]
  25. Reitz et al, Foundations of electromagnetic theory (Addison-Wesley, 1993), Chap. 16.
  26. Klein & Furtak, Optics (John Wiley & Sons, 1986), Chap. 2.
  27. R. A. Stile, T. A. Barber, D. G. Castner & K. E. Healy, "Sequential robust design methodology and X-ray photoelectron spectroscopy to analyze the grafting of hyaluronic acid to glass substrates," J. Biomed. Mater. Res. 61, 391-398 (2002). [CrossRef] [PubMed]
  28. N. J. Freeman, L. L. Peel, M. J. Swann, G. H. Cross, A. Reeves, S. Brand, and J. R. Lu, "Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry," J..Phys.: Condens. Matter 16, S2493-S2496 (2004). [CrossRef]
  29. I. Chorkendorff, and J. W. Niemantsverdriet, Concepts of modern catalysis and kinetics (Viley-vch, 2003). [CrossRef]
  30. J. Rickert, A. brecht, and W. Göpel, "QCM operation in liquids: Constant sensitivity during formation of extended protein multilayers by affinity," Anal. Chem. 69, 1441-1448 (1997). [CrossRef] [PubMed]
  31. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express 12, 1996-2001 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited