OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3301–3311

Time-resolved diffuse optical spectroscopy of small tissue samples

Paola Taroni, Daniela Comelli, Andrea Farina, Antonio Pifferi, and Alwin Kienle  »View Author Affiliations

Optics Express, Vol. 15, Issue 6, pp. 3301-3311 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-resolved transmittance spectroscopy was performed in the wavelength range of 610 or 700 to 1050 nm on phantom parallelepipeds and bone tissue cubes of different sizes. The data were best fitted with solutions of the diffusion equation for a laterally infinite slab and for a parallelepiped to investigate how size and optical properties of the samples affect the results obtained with the two models. Monte Carlo simulations were also performed to support and help with the interpretation of the experimental data. The parallelepiped model performs much better than the infinite slab model for the estimate of the reduced scattering coefficient and, even more, the absorption coefficient. It can profitably be used to quantify the optical properties of biological tissue samples and to derive information such as tissue composition, when small volumes are involved.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1990) Scattering : Diffusion

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 17, 2007
Revised Manuscript: February 27, 2007
Manuscript Accepted: March 1, 2007
Published: March 19, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Paola Taroni, Daniela Comelli, Andrea Farina, Antonio Pifferi, and Alwin Kienle, "Time-resolved diffuse optical spectroscopy of small tissue samples," Opt. Express 15, 3301-3311 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Hielscher, A.D. Klose, A. K. Scheel, B. Moa-Anderson1, M. Backhaus, U. Netz, and Jürgen Beuthan, "Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-1163 (2004). [CrossRef] [PubMed]
  2. L. Nicolaides and A. Mandelis, "Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence," J. Biomed. Opt. 5, 31-39 (2000). [CrossRef] [PubMed]
  3. H. Ottevaere, M. Tabak, D. Aznar, A. Fernandez Fernandez, S. Van Ierschot, F. Berghmans, and H. Thienpont, "Optical fiber sensors for monitoring stress build-up in dental cements," Proc. of the 16th International Conference on Optical Fiber Sensors OFS16 (2003).
  4. M. J. Niedre, G. M. Turner, and V. Ntziachristos, "Time-resolved imaging of optical coefficients through murine chest cavities," J. Biomed. Opt. 11, 064017 (2006). [CrossRef]
  5. A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, E. Stathopoulos, M. Kafousi, J. Ripoll, and T. G. Papazoglou1, "Optical characterization of thin female breast biopsies based on the reduced scattering coefficient," Phys. Med. Biol. 50, 2583-2596 (2005). [CrossRef] [PubMed]
  6. B. W. Pogue and M. S. Patterson, "Frequency-domain optical absorption spctroscopy of finite tissue volumes using diffusion theory," Phys. Med. Biol. 39, 1157-1180 (1994). [CrossRef] [PubMed]
  7. A. Kienle, "Light diffusion through a turbid papallelepiped," J. Opt. Soc. Am. A 22, 1883-1888 (2005). [CrossRef]
  8. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu "In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy," Phys. Med. Biol. 46, 2227-2237 (2001). [CrossRef] [PubMed]
  9. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997). [CrossRef] [PubMed]
  10. M. S. Patterson, B. Chance, and B. C. Wilson, "Time-resolved reflectance and transmittance for the noninvasive measureme nt of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  11. R. C. Haskell, L. O. Svasaand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B.J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  12. K. Furutsu and Y. Yamada, "Diffusion approximation for a dissipative random medium and the applications," Phys. Rev. E 50, 3634-3640 (1994). [CrossRef]
  13. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med Phys. 23, 1625-1633 (1996). [CrossRef] [PubMed]
  14. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, "Performance assessment of photon migration instruments: the MEDPHOT protocol, " Appl. Opt. 44, 2104-2114 (2005). [CrossRef] [PubMed]
  15. R. L. P. van Veen, H. J. C. M. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, "Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy," J. Biomed. Opt. 10, 054004 (2005). [CrossRef] [PubMed]
  16. S. Prahl, Oregon Medical Laser Center website: http://omlc.ogi.edu/spectra/water/ index.html.
  17. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, and R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt. 12, in press. [PubMed]
  18. L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner, "Design and testing of a generalized reduced gradient code for nonlinear programming," ACM Trans. Math. Software 4, 34-50 (1978). [CrossRef]
  19. L.-H. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine 47, 131-146 (1995). [CrossRef] [PubMed]
  20. T. J. Pfefer, J.K. Barton, E. K. Chan, M. G. Ducros, B. S. Sorg, T. E. Milner, J. S. Nelson, and A. J. Welch, "A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue," IEEE J. Sel. Top. Quantum Electron. 2, 934-942 (1996). [CrossRef]
  21. A. Kienle and M. S. Patterson, "Determination of the optical properties of turbid media from a single Monte Carlo simulation," Phys. Med. Biol. 41, 2221-2227 (1996). [CrossRef] [PubMed]
  22. F. Martelli and G. Zaccanti, "Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method," Opt. Express 15, 486-500 (2007). [CrossRef] [PubMed]
  23. A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu "Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies," J. Biomed. Opt. 9, 474-480 (2004). [CrossRef] [PubMed]
  24. A. Sviridov, V. Chernomordik, M. Hassan, A. Russo, A. Eidsath, P. Smith, and A. H. Gandjbakhche, "Intensity profiles of linearly polarized light backscattered from skin and tissue-like phantoms," J. Biomed. Opt. 10, 014012 (2005). [CrossRef]
  25. A. Kienle, C. Wetzel, A. Bassi, D. Comelli, P. Taroni, and A. Pifferi, "Determination of the optical properties of anisotropic biological media using an isotropic model," J. Biomed. Opt. 12, in press. [PubMed]
  26. D. L. Batchelar, M. T. M. Davidson, W. Dabrowski, and I. A. Cunnigham, "Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density," Med. Phys. 33, 904-915 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited